无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

汽车锂电池正极材料的制备与性能研究

  • 范庆科 ,
  • 孟庆华 ,
  • 罗凤钰
展开
  • 1.浙江农业商贸职业学院汽车技术系,浙江绍兴 312088
    2.杭州电子科技大学机械工程学院
    3.浙江大学材料科学与工程学院
范庆科(1991— ),男,硕士,讲师,研究方向为汽车电池材料;E-mail: funnyfantasy@163.com

收稿日期: 2020-07-19

  网络出版日期: 2021-01-08

基金资助

浙江省自然科学基金资助项目(LY16E050003);浙江省教育厅一般科研项目(Y201941363)

Study on preparation and properties of cathode materials for vehicle lithium battery

  • Qingke Fan ,
  • Qinghua Meng ,
  • Fengyu Luo
Expand
  • 1. Department of Automotive Technology,Zhejiang Agricultural Business College,Shaoxing 312088,China
    2. School of Mechanical Engineering,Hangzhou Dianzi University
    3. School of material science and engineering,Zhejiang University

Received date: 2020-07-19

  Online published: 2021-01-08

摘要

研究了钼掺杂对汽车锂电池正极材料[Mn0.58Ni0.18Co0.14]0.8-xMox(OH)2物相组成、微结构和电化学性能的影响。结果表明,x=0.005的正极材料由于具有最强的超晶格结构稳定性而表现出最强的超晶格衍射峰,而x=0.01和x=0.02的正极材料中钼酸锂杂相峰的存在会一定程度上破坏超晶格结构;不同钼掺杂的正极材料的颗粒粒径会随着Mo含量增加而不断增大;钼掺杂可以提升正极材料的锂离子键入能力而消除非晶态碳酸锂薄层的影响,但是过量钼掺杂会形成钼酸锂化合物;x=0.005的正极材料的放电比容量最高、传荷阻抗最小,充放电过程中锂离子更容易嵌入脱出,从而具有较高的高倍率放电性能,这主要与此时颗粒粒径较小以及形成了纯层状结构有助于增强锂离子导电性和动力学反应速度有关。

本文引用格式

范庆科 , 孟庆华 , 罗凤钰 . 汽车锂电池正极材料的制备与性能研究[J]. 无机盐工业, 2021 , 53(1) : 44 -49 . DOI: 10.11962/1006-4990.2020-0133

Abstract

The effects of Mo doping on the phase composition,microstructure and electrochemical properties of cathode material[Mn0.58Ni0.18Co0.14]0.8-xMox(OH)2 for vehicle lithium batteries were studied.The results showed that the x=0.005 ca-thode material exhibits the strongest superlattice diffraction peak due to the strongest superlattice structure stability,while the existence of Li2MoO4 heterophase peak in the x=0.01 and x=0.02 cathode materials will destroy the superlattice structure to a certain extent;the particle size of the cathode materials with different Mo doping will increase with the increase of Mo content;Mo doping can improve the Li separation of the positive materials and it can eliminate the influence of amorphous Li2CO3 thin layer by sub keying ability,but excessive Mo doping will form Li2MoO4 compound; x=0.005 cathode material has the highest discharge specific capacity and the smallest charge transfer impedance,and Li ion is easily embedded and detached more during charging and discharging,so it has high power discharge performance.It is mainly related to the smaller particle size and the formation of pure layered structure,which is helpful to enhance the conductivity of lithium ion and kinetic the reaction rate of lithium ion.

参考文献

[1] 沈炎宾, 陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报, 2020,65(Z1):117-126.
[2] Fan L, Wei S, Li S, et al. Recent progress of the solid-state electroly-tes for high-energy metal-based batteries[J]. Advanced Energy Ma-terials, 2018,8(11):1-31.
[3] 罗成果, 肖俊, 范广新. 锂离子电池正极材料LiMn2O4用前驱体的现状与发展[J]. 无机盐工业, 2020,52(1):26-29.
[4] Umeshbabu E, Zheng B, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electroly-tes[J]. Electrochemical Energy Reviews, 2019,2(2):199-230.
[5] Takada K, Ohta N, Tateyama Y. Recent progress in interfacial nano-architectonics in solid-state batteries[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2015,25(2):205-213.
[6] Kazunori Takada. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018,394:74-85.
[7] Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2017,8(8):1702397.
[8] 李文明, 邱茂琴, 杨则恒, 等. 共沉淀法制备锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料[J]. 硅酸盐学报, 2020,48(2):174-181.
[9] 李艳萍, 闫东伟, 周少雄, 等. 锂离子电池富锂锰基氧化物正极材料的制备及其性能[J]. 材料科学与工程学报, 2019,37(6):884-888,927.
[10] Zhang H M, Guo C, Nuli Y, et al. Solid-state electrolytes for lithium-sulfur batteries[J]. Transactions of Nanjing University of Aeronau-tics and Astronautics, 2018,35(4):5-17.
[11] 张雨薇, 刘成龙, 徐志江. 新能源汽车锂电池富锂锰基正极材料掺杂改性[J]. 电源技术, 2019,43(10):1596-1600.
[12] Chen D, Yu Q, Xiang X, et al. Porous layered lithium-rich oxide nanorods:Synjournal and performances as cathode of lithium ion battery[J]. Electrochimica Acta, 2015,154:83-93.
[13] 封平净, 卢鹏, 刘耀春, 等. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019,33(S1):50-52.
[14] Chen M, Xiang X, Chen D, et al. Polyethylene glycol-assisted synt-hesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery[J]. Journal of Power Sources, 2015,279:197-204.
[15] 陈婧妍, 忽小宇, 吕晓霞, 等. 基于Co比例变化的富锂锰基正极材料性能研究[J]. 化工新型材料, 2019,47(S1):129-133.
[16] Wu J F, Guo X. Nanostructured metal-organic framework(MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries[J]. Small, 2019,15(27):1902429.
[17] 杨金戈, 李宇杰, 陆地, 等. 微纳结构富锂锰基层状正极材料的形貌调控与储锂性能[J]. 高等学校化学学报, 2019,40(7):1495-1500.
[18] Oh D Y, Nam Y J, Park K H, et al. Excellent compatibility of solv-ate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Advanced Energy Materials, 2015,5(22):396-400.
[19] 徐金鹏, 江靖雯, 黄海富, 等. 超声辅助共沉淀法制备富锂锰基正极材料[J]. 稀有金属材料与工程, 2019,48(10):3359-3365.
[20] Unemoto A, Ogawa H, Gambe Y, et al. Development of lithium-sul-fur batteries using room temperature ionic liquid-based quasi-so-lid-state electrolytes[J]. Electrochimica Acta, 2014,125:386-394.
[21] Nagata H, Chikusa Y. An all-solid-state lithium-sulfur battery us-ing two solid electrolytes having different functions[J]. Journal of Power Sources, 2016,329(15):268-272.
[22] Yao X, Huang N, Han F, et al. High-performance all-solid-state li-thium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017,7(17):1-9.
[23] 杨凯, 耿萌萌, 叶俊, 等. 富锂材料Li1.2Mn0.54Ni0.13Co0.13O2的Mo掺杂及电化学性能研究[J]. 电子元件与材料, 2019,38(3):7-15.
[24] 王策, 王俊, 陈彦彬, 等. 富锂锰基正极材料Li(1.2-x)NaxNi0.13Co0.13Mn0.54O2的制备及电化学性能[J]. 材料与冶金学报, 2019,18(4):300-304.
[25] Tao X, Liu Y, Liu W, et al. Solid-state lithium-sulfur batteries op-erated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/Car-bon foam and polymer[J]. Nano Letters, 2017,17(5):2967-2972.
[26] 王征荣, 张海朗. 过锂量对富锂锰基正极材料Li(1.2+x)Ni0.1Co0.2Mn0.5O2结构与电化学性能的影响[J]. 稀有金属材料与工程, 2019,48(3):941-946.
[27] Nakazawa T, Ikoma A, Kido R, et al. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries[J]. Journal of Po-wer Sources, 2016,307(1):746-752.
[28] D′Angelo A J, Panzer M J. The design of stretchable and self-hea-ling gel electrolytes via fully-zwitterionic polymer networks in sol-vate ionic liquids for Li-based batteries[J]. Chemistry of Materials, 2019,31(8):2913-2922.
文章导航

/