无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

电沉积法合成纳米铂-铱粒子及其电化学性能研究

  • 刘艳蕊 ,
  • 葛军营 ,
  • 张兆贵 ,
  • 刘雨辰
展开
  • 1.潍坊工程职业学院应用化学与食品药品学院,山东潍坊262500
    2.天津金牛电源材料有限责任公司
刘艳蕊(1981— ),女,硕士,讲师,研究方向为精细化工;E-mail: liuyanrui27@163.com

收稿日期: 2020-03-19

  网络出版日期: 2020-09-27

Synthesis and electrochemical properties of nano-sized Pt-Ir particle by electrodeposition method

  • Yanrui Liu ,
  • Junying Ge ,
  • Zhaogui Zhang ,
  • Yuchen Liu
Expand
  • 1. Institute of Applied Chemistry and Food and Drug,Weifang Engineering Vocational College,Weifang 262500,China
    2. Tianjin Jinniu Power Sources Material Co.,Ltd.

Received date: 2020-03-19

  Online published: 2020-09-27

摘要

以碳纤维纸为基底,采用电沉积法分步合成了纳米铂-铱(Pt-Ir)粒子。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱(EDS)等物理表征手段对电催化剂的形貌结构及元素组成进行了研究。从生物质来源的乙酰丙酸(LA)出发,以纳米铂-铱粒子为电催化剂,在甲醇相体系中电催化合成2,7-辛二酮。同时,实验结果证明铱元素的引入增强了纳米铂粒子的电化学活性,并降低了铂的使用量,节约了成本。

本文引用格式

刘艳蕊 , 葛军营 , 张兆贵 , 刘雨辰 . 电沉积法合成纳米铂-铱粒子及其电化学性能研究[J]. 无机盐工业, 2020 , 52(9) : 66 -69 . DOI: 10.11962/1006-4990.2019-0520

Abstract

Nano-sized Pt-Ir particle was synthesized by electrodeposition method with carbon fiber paper as the substrate.The morphology,structure and element composition of the electrocatalyst were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray energy spectrum analysis(EDS) and other physical characterization methods.Starting with the biomass downstream product levulinic acid,2,7-octanedione was synthesized in methanol system with the nano-sized Pt-Ir particle as electrocatalyst.Meanwhile,the experimental results showed that the introduction of Ir improved the electrochemical activity of Pt particles and reduced the amount of Pt and the cost.

参考文献

[1] Mariscal R, Maireles-Torres P, Ojeda M, et al. Furfural:a renewable and versatile platform molecule for the synjournal of chemicals and fuels[J]. Energy & Environmental Science, 2016,9(4):1144-1189.
[2] Demirbas A. Progress and recent trends in biofuels[J]. Progress in Energy and Combustion Science, 2007,33(1):1-18.
[3] Hu L, Zhao G, Hao W, et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC Advances, 2012,2(30):11184-11206.
[4] Bohre A, Dutta S, Saha B, et al. Upgrading furfurals to drop-in bio-fuels:An overview[J]. ACS Sustainable Chemistry & Engineering, 2015,3(7):1263-1277.
[5] dos Santos T R, Nilges P, Sauter W, et al. Electrochemistry for the generation of renewable chemicals:electrochemical conversion of levulinic acid[J]. RSC Advances, 2015,5(34):26634-26643.
[6] Ahmad E, Alam M I, Pant K K, et al. Catalytic and mechanistic in-sights into the production of ethyl levulinate from biorenewable fee-dstocks[J]. Green Chemistry, 2016,18(18):4804-4823.
[7] Nilges P, dos Santos T R, Harnisch F, et al. Electrochemistry for bio-fuel generation:Electrochemical conversion of levulinic acid to oct-ane[J]. Energy & Environmental Science, 2012,5:5231-5235.
[8] Qiu Y, Xin L, Chadderdon D J, et al. Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid[J]. Green Chemistry, 2014,16(3):1305-1315.
[9] Xin L, Zhang Z, Qi J, et al. Electricity storage in biofuels:selective electrocatalytic reduction of levulinic acid to valeric acid or γ-va-lerolactone[J]. ChemSusChem, 2013,6(4):674-686.
[10] Schafer H J. Contributions of organic electrosynjournal to green chemistry[J]. Comptes Rendus Chimie, 2011,14(7/8):745-765.
[11] Waldvogel S R, Janza B. Renaissance of electrosynthetic methods for the construction of complex molecules[J]. Angewandte Chemie International Edition, 2014,53(28):7122-7123.
[12] Francke R, Little R D. Redox catalysis in organic electrosynjournal:basic principles and recent developments[J]. Chemical Society Reviews, 2014,43(8):2492-2521.
[13] Tian N, Zhou Z Y, Sun S G, et al. Synjournal of tetrahexahedral pla-tinum nanocrystals with high-index facets and high electro-oxida-tion activity[J]. Science, 2007,316(5825):732-735.
[14] Lim B, Jiang M, Camargo P H C,et al. Pd-Pt bimetallic nanodend-rites with high activity for oxygen reduction[J]. Science, 2009,324:1302-1305.
[15] Du J H, Sheng T, Xiao C, et al. Shape transformation of {hk0}-face-ted Pt nanocrystals from a tetrahexahedron into a truncated ditetra-gonal prism[J]. Chemical Communications, 2017,53(22):3236-3238.
[16] 岳坤. 电沉积纳米Pt和Pt-Ir及其电催化浓硝酸还原研究[D]. 天津:天津大学, 2017.
[17] Shan C C, Tsai D, Huang Y S, et al. Pt-Ir-IrO2NT thin-wall elec-trocatalysts derived from IrO2 nanotubes and their catalytic activi-ties in methanol oxidation[J]. Chemistry of Materials, 2007,19(3):424-431.
[18] 唐会毅, 吴保安, 刘庆宾, 等. 铂铱合金的制备技术及应用[J]. 材料保护, 2016,49(增刊):162-163.
[19] Sawy E N E, Molero H M, Birss V I. Methanol oxidation at porous Co-electrodeposited Pt-Ir thin films[J]. Electrochimica Acta, 2014,117:202-210.
[20] 王松, 谢明, 张吉明, 等. 铱及其合金制备工艺的研究进展[J]. 贵金属, 2013,34(S1):84-88.
文章导航

/