无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

Sm掺杂ZnO QDs的制备及其荧光性能研究

  • 黄秋梅 ,
  • 吕晓威 ,
  • 谭嘉麟 ,
  • 李利军 ,
  • 程昊 ,
  • 冯军 ,
  • 黄文艺
展开
  • 1.广西糖资源绿色加工重点实验室, 广西科技大学生物与化学工程学院,广西柳州 545006
    2.蔗糖产业省部共建协同创新中心
黄秋梅(1994— ),女,在读研究生,主要从事纳米材料方面的研究;E-mail: 1160743521@qq.com

收稿日期: 2020-02-26

  网络出版日期: 2020-08-12

基金资助

国家自然科学基金地区科学基金项目(31560466);广西高等学校高水平创新团队及卓越学者计划资助项目(桂教人[2014]7号);广西科技大学博士启动基金项目(12Z04);西研究生教育创新计划项目(YCSW2020220)

Preparation of Sm doped ZnO QDs and its fluorescence performance

  • Qiumei Huang ,
  • Xiaowei Lü ,
  • Jialin Tan ,
  • Lijun Li ,
  • Hao Cheng ,
  • Jun Feng ,
  • Wenyi Huang
Expand
  • 1. Guangxi Key Laboratory of Green Processing of Sugar Resources,College of Biological and Chemical Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China
    2. Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry

Received date: 2020-02-26

  Online published: 2020-08-12

摘要

通过研究不同碱/锌、钐/锌物质的量比制备了分散性良好的Sm掺杂氧化锌量子点(ZnO QDs)。通过紫外可见光谱(UV-vis)、X射线衍射(XRD)、场致发射透射电子显微镜(TEM)、能量色散X射线谱(EDS)、X射线光电子能谱(XPS)对样品做了表征。研究结果表明,n(Zn)∶n(OH-)=1∶1、Sm掺杂量为4%(物质的量分数)时制备的ZnO QDs在383 nm紫外光激发下的荧光发射强度最强。并发现稀土钐离子的掺杂与ZnO QDs的氧空位(OV)形成有关。Sm掺杂后的ZnO QDs的氧空位浓度比未掺杂的高,且ZnO QDs氧空位的浓度越大,其荧光发射强度越强。

关键词: ZnO QDs; ; 掺杂; 荧光

本文引用格式

黄秋梅 , 吕晓威 , 谭嘉麟 , 李利军 , 程昊 , 冯军 , 黄文艺 . Sm掺杂ZnO QDs的制备及其荧光性能研究[J]. 无机盐工业, 2020 , 52(8) : 30 -35 . DOI: 10.11962/1006-4990.2019-0498

Abstract

Sm-doped zinc oxide quantum dots(ZnO QDs) with good dispersibility were prepared by studying different amount-of-substance ratiosof alkali-zinc and samarium-zinc.It was characterized by UV-vis spectroscopy(UV-vis),X-ray diffraction(XRD),field emission transmission electron microscopy(TEM),energy dispersive X-ray spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS).The results showed that ZnO QDs prepared with n(Zn)∶n(OH-)=1∶1 and Sm doping amount of 4%(amount-of-substance fraction) had the strongest fluorescence emission intensity under UV excitation at 383 nm.It was also found that the doping of rare earth Sm ions was related to the formation of oxygen vacancies(OV) in ZnO QDs.The oxygen vacancy concentration of Sm-doped ZnO QDs was higher than that of undoped,and the higher the concentration of oxygen vacancies in ZnO QDs,the stronger the fluorescence emission intensity.

Key words: ZnO QDs; Sm; doping; fluorescence

参考文献

[1] Wang P, Cao L, Wu Y, et al. A cathodic photoelectrochemical sensor for chromium(Ⅵ) based on the use of PbS quantum dot semiconductors on an ITO electrode[J]. Mikrochimica Acta, 2018,185(7):356.
[2] Nezhad-Mokhtari P, Arsalani N, Ghorbani M, et al. Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting[J]. Journal of Materials Science, 2018,53(15):10679-10691.
[3] Sheung J, Ge P, Lim S J, et al. Structural contributions to hydrodynamic diameter for quantum dots optimized for live-cell single-molecule tracking[J]. Journal of Physical Chemistry C, 2018.Doi: 10.1021/acs.jpcc.8b02516.
[4] Kong L, Zhang L, Meng Z, et al. Ultrastable,highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting[J]. Nanotechnology, 2018,29(31).Doi: 10.1088/1361-6528/aac39c.
[5] Chai Y Y, Qu D P, Ma D K, et al. Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine [J]. Applied Surface Science, 2018,450:1-8.
[6] Peng Z, Liu Z, Liu Y, et al. Improving on the interparticle connection for performance enhancement of flexible quantum dot sensitized solar cells[J]. Materials Research Bulletin, 2018,105:91-97.
[7] Ye Y. Photoluminescence property adjustment of ZnO quantum dots synthesized via sol-gel method[J]. Journal of Materials Science Materials in Electronics, 2018,29:4967-4974.
[8] Roshini A, Jagadeesan S, Arivazhagan L, et al. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and antimetastatic effects in metastatic lung cancer cell line[J]. Materials Science & Engineering, 2018,92:477-488.
[9] Ensafi A A, Zakery M, Rezaei B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer[J]. Molecular and Biomolecular Spectroscopy, 2019,206:460-465.
[10] Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al. Identification of the transition responsible for the visible emission in ZnO using quantum size effects[J]. Journal of Luminescence, 2000,90(3/4):123-128.
[11] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behindgreen photoluminescence in ZnO phosphor powders[J]. Journal of Applied Physics, 1996,79(10):7983-7990.
[12] van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation[J]. Journal of Physical Chemistry B, 2000,104(8):1715-1723.
[13] Xiong H M, Shchukin D, M?hwald H, et al. Sonochemical synjournal of highly luminescent zinc oxide nanoparticles doped with magnesium(Ⅱ)[J]. 2009,48(15):2727-2731.
[14] Huang W Y, Lv X W, Tan J L, et al. Regulable preparation of the oxygen vacancy of ZnO QDs and their fluorescence performance[J]. Journal of Molecular Structure, 2019,1195:653-658.
[15] Jaggi N, Rathee N. Samarium3+-doped CdSe quantum dots for improved electro-optical properties [J]. Materials Today: Proceedings, 2019,16:201-205.
[16] Yang J, Li X, Lang J, et al. Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials [J]. Journal of Alloys & Compounds, 2011,509(41):10025-10031.
[17] Liu Y, Ai K, Yuan Q, et al. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging[J]. Biomaterials, 2011,32(4):1185-1192.
[18] Sun L W, Shi H Q, Li W N, et al. Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield[J]. Journal of Materials Chemistry, 2012,22(17):8221-8227.
[19] Huang W Y, Bai D W, Li L J, et al. The synjournal of ultrasmall ZnO@PEG nanoparticles and its fluorescence properties[J]. Journal of Sol-Gel Science and Technology, 2015,74(3):718-725.
[20] Manikandan A, Vijaya J J, Narayanan S, et al. Comparative investigation of structural,optical properties and dye-sensitized solar cell applications of ZnO nanostructures[J]. Journal of Nanoscience and Nanotechnology, 2014,14(3):2507-2514.
[21] Shakir M, Faraz M, Sherwani A, et al. Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro Cytotoxicity assay[J]. Journal of Luminescence, 2016,176:159-167.
[22] Ahmed M A M, Meyer W E, Nel J M. Structural,optical and electrical properties of the fabricated Schottky diodes based on ZnO,Ce and Sm doped ZnO films prepared via wet chemical technique[J]. Materials Research Bulletin, 2019,115:12-18.
[23] Bomila R, Srinivasan S, Gunasekaran S, et al. Enhanced photocat alytic degradation of methylene blue dye,opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2018,31:855-864.
[24] Pascariu P, Cojocaru C, Olaru N, et al. Novel rare earth (RE-La,Er,Sm) metal doped ZnO photocatalysts for degradation of Congo-reddye: Synjournal,characterization and kinetic studies[J]. Journal of Environmental Management, 2019,239:225-234.
[25] Caglar Y, Caglar M, Ilican S.XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes[J]. Optik, 2018,164:424-432.
[26] Thool G S, Arunakumari M, Singh A K, et al. Shape tunable synjournal of Eu-and Sm-doped ZnO microstructures:A morphological evaluation[J]. Bulletin of Materials Science, 2015,38(6):1519-1525.
[27] Wang D D, Xing G Z, Yang J H, et al. Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers[J]. Journal of Alloys and Compounds, 2010,504(1):22-26.
[28] Ahmed M, Doyle B P, Carleschi E, et al. Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition[J]. Materials Science in Semiconductor Processing, 2018,79:53-60.
[29] Ahmed M A, Coetsee L, Meyer W E, et al. Influence(Ce and Sm)co-doping ZnO nanorods on the structural,optical and electrical properties of the fabricated Schottky diode using chemical bath deposition[J]. Journal of Alloys and Compounds, 2019,810:151929.
[30] Ning H, Wu X, Chai L, et al. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors[J]. Sensors & Actuators B Chemical, 2010,150(1):230-238.
[31] Halliburton L E, Giles N C, Garces N Y, et al. Production of native donors in ZnO by annealing at high temperature in Zn vapor[J]. Applied Physics Letters, 2005,87(17):172108.
[32] Look D C, Reynolds D C, Hemsky J W, et al. Production and annealing of electron irradiation damage in ZnO[J]. Applied Physics Letters, 1999,75(6):811-813.
[33] Wang H P, Jiang H, Wang X M . Construction of strong alkaline microcavities for facile synjournal of fluorescence-tunable ZnO quantum dots[J]. Chemical Communications, 2010,46(37):6857-7052.
文章导航

/