氧化铜/钒酸铋异质结薄膜的制备及其光电性能研究
收稿日期: 2020-01-10
网络出版日期: 2020-07-13
Preparation and photoelectric properties of CuO/BiVO4 heterojunction films
Received date: 2020-01-10
Online published: 2020-07-13
采用电化学沉积法在FTO玻璃上制备了具有纳米多孔网状结构的氧化铜/钒酸铋薄膜。利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、能谱分析(EDS)对薄膜做成分及结构分析,采用线性伏安扫描(LSV)、频率阻抗测试(EIS)对薄膜做光电性能测试。氧化铜的掺入能够提高钒酸铋薄膜的光电性能,在1.23 Vvs.RHE时,40 mmol/L 氧化铜/钒酸铋薄膜的光电流密度为1.39 mA/cm2,比纯钒酸铋薄膜的光电流密度(0.7 mA/cm2)增大了1倍左右。结果表明,纳米多孔的网状结构,提高了薄膜对光的利用效率,同时也增加了薄膜和电解液的接触面积。氧化铜和钒酸铋复合形成异质结后,抑制了光生电子-空穴对的复合,从而提高了氧化铜/钒酸铋薄膜的光电流密度。
张伟 , 王丹丹 , 田中青 . 氧化铜/钒酸铋异质结薄膜的制备及其光电性能研究[J]. 无机盐工业, 2020 , 52(7) : 99 -102 . DOI: 10.11962/1006-4990.2019-0469
CuO/BiVO4 thin films with nanoporous network structure were prepared on FTO glass by electrochemical deposition.X-ray diffraction(XRD),Raman spectroscopy(Raman),scanning electron microscopy(SEM) and energy spectrum analysis(EDS) were used to analyze the composition and structure of the film,and linear voltammetric scanning(LSV) and frequency impedance test(EIS) were used to test the photoelectric properties of the film.The doping of CuO could improve the photoelectric properties of BiVO4 thin films.The photocurrent density of 40 mmol/L CuO/BiVO4 film was 1.39 mA/cm2 at 1.23 Vvs.RHE,which was about twice as high as that of pure BiVO4 film(0.7mA/cm2).The results showed that the nanoporous network structure improved the light utilization efficiency of the film,and also increased the contact area between the film and electrolyte.The photocurrent density of CuO/BiVO4 thin films was increased by inhibiting the recombination of photogenerated electron-hole pairs after the formation of heterojunction between CuO and BiVO4.
Key words: BiVO4; CuO; electrodeposition; photocurrent
[1] | Wu J M, Chen Y, Pan L, et al. Multi-layer monoclinic BiVO4,with oxygen vacancies and V4+,species for highly efficient visible-light photoelectrochemical applications[J]. Applied Catalysis B:Environmental, 2018,221:187-195. |
[2] | Liu M, Yu Y, Zhang W. A non-enzymatic hydrogen peroxide photoelectrochemical sensor based on a BiVO4 electrode[J]. Electroanalysis, 2016,29(1):305-311. |
[3] | Kim T W, Choi K S. Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014,343(6174):990-994. |
[4] | Gong H, Freudenberg N, Nie M, et al. BiVO4 photoanodes for water splitting with high injection efficiency,deposited by reactive magnetron co-sputtering[J]. AIP Advances, 2016,6(4):045108. |
[5] | Wang L, Gu X, Zhao Y, et al. Enhanced photoelectrochemical prformance by doping Mo into BiVO4 lattice[J]. Journal of Materials Science:Materials in Electronics, 2018,29(22):19278-19286. |
[6] | Lee M G, Jin K, Kwon K C, et al. Efficient water splitting cascade photoanodes with ligand-engineered MnO cocatalysts[J]. Advanced Science, 2018,5(10):1800727. |
[7] | Marathey P, Pati R K, Mukhopadhyay I, et al. Effective photocurrent enhancement in nanostructured CuO by organic dye sensitization:studies on charge transfer kinetics[J]. The Journal of Physical Chemistry C, 2018,122(7):3690-3699. |
[8] | Zheng J Y, Song G, Kim C W, et al. Facile preparation of p-CuO and p-CuO/n-CuWO4 junction thin films and their photoelectro-chemical properties[J]. Electrochimica Acta, 2012,69:340-344. |
[9] | Zhao W, Wang Y, Yang Y, et al. Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction:preparation,characterization,and photocatalytic properties[J]. Applied Catalysis B: Environmental, 2012,115:90-99. |
[10] | 张聪, 冉建华, Felix Y T, 等. CuO/BiVO4催化剂制备及其可见光降解亚甲基蓝的研究[J]. 武汉纺织大学学报, 2015,28(6):39-44. |
[11] | Chang X, Wang T, Zhang P, et al. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes[J]. Journal of the American Chemical Society, 2015,137(26):8356-8359. |
[12] | Hosseini S G, Safshekan S. Synjournal,characterization and application of BiVO4 photoanode for photoelectrochemical oxidation of chlorate[J]. Chinese Journal of Catalysis, 2017,38(4):710-716. |
[13] | 吕军军, 李明愉, 曾庆轩. 草酸铜及纳米氧化铜的制备与表征[J]. 火炸药学报, 2011,34(1):86-90. |
[14] | Xiang H, Long Y, Yu X, et al. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning[J]. CrystEngComm, 2011,13(15):4856-4860. |
/
〈 |
|
〉 |