纳米级增强体复合硅气凝胶的研究进展
收稿日期: 2019-10-20
网络出版日期: 2020-04-22
基金资助
“十三五”国家重点研发计划子课题(2016YFC0701002-02);吉林省教育厅“十三五”科学技术项目(JJKH20170239KJ)
Research progress of nano-sized reinforced silica aerogel composites
Received date: 2019-10-20
Online published: 2020-04-22
赵洪凯 , 邵凯 , 刘威 . 纳米级增强体复合硅气凝胶的研究进展[J]. 无机盐工业, 2020 , 52(4) : 7 -11 . DOI: 10.11962/1006-4990.2019-0269
The application of silica aerogel is restricted due to its high brittleness and low mechanical strength.Conventional reinforced silica aerogel composites with micron size or larger can improve the properties of silica aerogel,but it is difficult to enhance the pore size in the nanometer size range.At present,synthetic polymer nanofibers,cellulose nanofibers,nanotubes,inorganic nanofibers,graphene and graphene oxide etc.could be used to enhance the properties of silica aerogel.The nano-sized reinforced material can be evenly dispersed in the nano-sized pores of silica aerogels.It has the advantages of low dry shrink and large specific surface area,which can effectively improve compressive strength and toughness of silica aerogel.
[1] | Fei Zhifang, Yang Zichun, Chen Guobing , et al. Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area[J]. Journal of Materials Science, 2018,53(18):12885-12893. |
[2] | Bi Wuguo, Song Rongjun, Meng Xiaoyu , et al. In situ synjournal of silica gel nanowire/Na +-montmorillonite nanocomposites by the sol-gel route [J]. Nanotechnology, 2007,18(11):115620. |
[3] | 赵洪凯, 许亚军 . 硅气凝胶增强增韧的研究进展[J]. 无机盐工业, 2019,51(1):12-15. |
[4] | Yuan B, Ding S, Wang D , et al. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming[J]. Ma-terials Letters, 2012,75:204-206. |
[5] | He J, Li X, Su D , et al. Ultra-low thermal conductivity and high st-rength of aerogels/fibrous ceramic composites[J]. Journal of the Eu-ropean Ceramic Society, 2016,36(6):1487-1493. |
[6] | Li L, Yalcin B, Nguyen B N , et al. Flexible nanofiber-reinforced ae-rogel(xerogel) synjournal,manufacture,and characterization[J]. ACS Applied Materials & Interfaces, 2009,1(11):2491-2501. |
[7] | Chen Q, Chen Y, Wu H , et al. Preparation and characterisation of aerogel composites reinforced with electrospun nanofibre[J]. Mate-rials Research Innovations, 2015,19(s2):185-189. |
[8] | Wu H, Chen Y, Chen Q , et al. Synjournal of flexible aerogel composi-tes reinforced with electrospun nanofibers and microparticles for thermal insulation[J]. Journal of Nanomaterials, 2013,2013:375093. |
[9] | Wu H, Liao Y, Ding Y , et al. Engineering thermal and mechanical properties of multilayer aligned fiber-reinforced aerogel composit-es[J]. Heat Transfer Engineering, 2014,35(11/12):1061-1070. |
[10] | Boday D J, Muriithi B, Stover R J , et al. Polyaniline nanofiber silica composite aerogels[J]. Journal of Non-Crystalline Solids, 2012,358(12/13):1575-1580. |
[11] | Demilecamps A, Reichenauer G, Rigacci A , et al. Cellulose-silica composite aerogels from“one-pot”synjournal[J]. Cellulose, 2014,21(4):2625-2636. |
[12] | Wong J C H, Kaymak H, Tingaut P , et al. Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel com-posites[J]. Microporous and Mesoporous Materials, 2015,217:150-158. |
[13] | 付菁菁, 何春霞, 陈永生 , 等. 纳米纤维素增强SiO2气凝胶力学性能与微观结构[J]. 复合材料学报, 2018,35(9):2593-2599. |
[14] | Kim C Y, Lee J K, Kim B I . Synjournal and pore analysis of aerogel-glass fiber composites by ambient drying method[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2008,313/314:179-182. |
[15] | Li M, Jiang H, Xu D , et al. A facile method to prepare cellulose whiskers-silica aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2017,83(1):72-80. |
[16] | Liu H, Chu P, Li H , et al. Novel three-dimensional halloysite nano-tubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure[J]. Jo-urnal of Sol-Gel Science and Technology, 2016,80(3):651-659. |
[17] | Sedova A, Bar G, Goldbart O , et al. Reinforcing silica aerogels with tungsten disulfide nanotubes[J]. The Journal of Supercritical Flu-ids, 2015,106:9-15. |
[18] | 吴会军, 彭程, 丁云飞 , 等. 碳纳米管增强气凝胶隔热复合材料的性能研究[J]. 广州大学学报:自然科学版, 2012,11(6):32-37. |
[19] | 张贺新, 赫晓东, 李垚 . 碳纳米管掺杂SiO2气凝胶隔热材料的制备与性能表征[J]. 稀有金属材料与工程, 2007,36(S1):567-569. |
[20] | Pi?ero Manuel, del Mar Mesa-Díaz María, de los Santos Desirée , et al. Reinforced silica-carbon nanotube monolithic aerogels syn-journaled by rapid controlled gelation[J]. Journal of Sol-Gel Science and Technology, 2018,86(2):391-399. |
[21] | 宋凯 . 硅藻土制备SiO2气凝胶及其复合体系[D]. 大连:大连理工大学, 2012. |
[22] | 王宝民, 宋凯, 马海楠 . 纳米碳纤维掺杂气凝胶的合成及性能[J]. 哈尔滨工程大学学报, 2013,34(5):604-608. |
[23] | Wei T Y, Lu S Y, Chang Y C . A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities[J]. The Journal of Physical Chemistry C, 2009,113(17):7424-7428. |
[24] | Agnieszka Slosarczyk . Synjournal and characterization of silica aero-gel-based nanocomposites with carbon fibers and carbon nanotu-bes in hybrid system[J]. Journal of Sol-Gel Science and Techno-logy, 2017,84(1):16-22. |
[25] | Meador M A B, Vivod S L, McCorkle L , et al. Reinforcing polymer cross-linked aerogels with carbon nanofibers[J]. Journal of Mate-rials Chemistry, 2008,18:1843-1852. |
[26] | 李可, 陈林, 牛胜杰 , 等. 常压干燥工艺制备SiO2纳米纤维-SiO2复合气凝胶及其表征[J]. 现代化工, 2018,38(8):172-175. |
[27] | Tang X, Sun A, Chu C , et al. A novel silica nanowire-silica compo-site aerogels dried at ambient pressure[J]. Materials & Design, 2017,115:415-421. |
[28] | Shao Z, He X, Niu Z , et al. Ambient pressure dried shape-controlla-ble sodium silicate based composite silica aerogel monoliths[J]. Materials Chemistry and Physics, 2015,162:346-353. |
[29] | 郑红霞 . SiO2纳米纤维/纳米颗粒复合材料的制备及其隔热性能研究[D]. 上海:东华大学, 2016. |
[30] | Zheng Hongxia, Shan Haoru, Bai Ying , et al. Assembly of silica ae-rogels within silica nanofibers:Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015,111:91813-91820. |
[31] | 伊希斌, 王修春, 张晶 , 等. 自生纳米纤维增强SiO2气凝胶的制备及性能研究[J]. 无机化学学报, 2014,30(3):603-608. |
[32] | 伊希斌, 张晶, 马婕 , 等. 自生长纳米纤维增强SiO2气凝胶的制备和力学性能研究[J]. 南京工业大学学报:自然科学版, 2016,38(2):27-32. |
[33] | Yi X, Zhang L, Wang F , et al. Mechanically reinforced composite aerogel blocks by self-growing nanofibers[J]. RSC Advances, 2014,4:48601-48605. |
[34] | 卢斌, 黄欢, 陈琴 , 等. Ni纳米线/SiO2复合气凝胶的制备及机理分析[J]. 中南大学学报:自然科学版, 2011,42(5):1276-1281. |
[35] | Li J, Lei Y, Xu D , et al. Improved mechanical and thermal insula-tion properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure[J]. Journal of Sol-Gel Science and Technology, 2017,82(3):702-711. |
[36] | 贺伟 . 石墨烯、纤维增强硅气凝胶的制备与性能研究[D]. 南京:东南大学, 2017. |
[37] | Park S, Ruoff R S . Chemical methods for the production of graphen-es[J]. Nature Nanotechnology, 2009,4(4):217-224. |
[38] | Lei Y, Hu Z, Cao B , et al. Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing grapheme oxide[J]. Materials Chemistry and Physics, 2017,187:183-190. |
[39] | Zhang H, Fang W, Li Z , et al. The influence of gaseous heat conduc-tion to the effective thermal conductivity of nano-porous materi-als[J]. International Communications in Heat and Mass Transfer, 2015,68:158-161. |
[40] | Dervin S, Lang Y, Perova T , et al. Graphene oxide reinforced high surface area silica aerogels[J]. Journal of Non-Crystalline Solids, 2017,465:31-38. |
/
〈 |
|
〉 |