无机盐工业 ›› 2022, Vol. 54 ›› Issue (10): 57-68.doi: 10.19964/j.issn.1006-4990.2021-0602
收稿日期:
2021-10-11
出版日期:
2022-10-10
发布日期:
2022-11-03
作者简介:
余沃晖(1997— ),男,硕士研究生,主要研究方向为低温SCR烟气脱硝;E-mail:基金资助:
YU Wohui(),ZHANG Pan,ZHAO Yiming,ZHA Zhongfa,WU Ruilong,QI Liqiang(
)
Received:
2021-10-11
Published:
2022-10-10
Online:
2022-11-03
摘要:
在传统选择性催化还原技术(SCR)催化剂的基础上,分别以钒-钛系催化剂、固溶体催化剂和新型MnO x 催化剂为重点介绍了近些年低温SCR催化剂的研究进展,综述了不同活性组分的复合型催化剂的制备方法、元素掺杂、反应机理和抗性等,并通过分析不同复合型催化剂的表征总结了催化剂的性能状况以及低温脱硝效率,着重阐述了新型MnO x 催化剂所具有的优异脱硝特性,认为通过改性提高新型MnO x 的抗水抗硫性将会成为该领域未来的发展方向和研究热点,最后介绍了不同负载体对新型MnO x 催化剂的催化效率的影响规律,发现二氧化钛负载体具有良好的抗水性,三氧化二铝负载体能显著增强催化活性,二氧化铈负载体的热稳定性较好。
中图分类号:
余沃晖,张盼,赵一明,查中发,吴瑞龙,齐立强. 低温脱硝催化剂研究进展[J]. 无机盐工业, 2022, 54(10): 57-68.
YU Wohui,ZHANG Pan,ZHAO Yiming,ZHA Zhongfa,WU Ruilong,QI Liqiang. Research progress on low-temperature denitration catalysts[J]. Inorganic Chemicals Industry, 2022, 54(10): 57-68.
表1
不同脱硝工艺比较
脱硝工艺 | 脱硝率/% | 还原/氧化剂 | 反应温度/℃ | 催化剂 | 工艺缺点 | ||
---|---|---|---|---|---|---|---|
干法 脱硝 | 氧化法 | 光催化氧化 | 70~75 | TiO2、硫化镉 | 无 | 使用 | 光子产率低、光源单一 |
氧化物氧化 | 70~80 | 金属氧化物 | 无 | 不使用 | 需处理废弃金属氧化物 | ||
等离子体氧化 | 60~90 | 氨水 | 无 | 不使用 | 能耗大,伴随氨逃逸 | ||
分解法 | 光催化分解 | 一般 | 无 | 无 | 使用 | 反应活化能高,所需温度高 | |
热催化分解 | 一般 | 无 | >500 | 使用 | |||
还原法 | 光催化还原 | 一般 | NH3或醇类 | 无 | 使用 | 催化还原效果不理想、反应不完全 | |
SCR | 75~90 | NH3或尿素 | 100~400 | 使用 | 无明显缺点 | ||
SNCR | 40~70 | NH3或尿素 | 800~1 300 | 不使用 | 氨逃逸 | ||
吸附法 (活性炭和活性焦) | 50~80 | NH3或尿素 | 150~200 | 使用 | 抗硫性差、脱硝效率低 | ||
湿法 脱硝 | 吸收法 | 溶液吸收 | 较高 | 无 | <150 | 不使用 | 产生废液、能耗高、酸循环需求量大 |
气相氧化吸收 | O2、O3、ClO2等 | O3成本高、ClO2易造成二次污染 | |||||
液相氧化吸收 | Fenton试剂、含氯氧化剂等 | 成本高,易造成二次污染 | |||||
生物法 | 70~80 | 无 | 无 | 不使用 | 脱硝效率低 |
表3
不同元素掺杂的新型MnO x 催化剂的性质及特点
催化剂 | 类型 | 制备方法 | 最佳活性 (NO x 转化率) | 物质的量比 | 催化剂特点(活性机理) | 文献来源 |
---|---|---|---|---|---|---|
无负 载体 | Mn-Ce | 表面活性剂模板法 | 100~200 ℃,>95% | n(Mn)/n(Ce)=1 | 较高的比表面积,活性中心均匀,易于吸附NH3和NO x,抗硫性突出 | [ |
共沉淀法 | 150 ℃,约为95% | |||||
La1-x Ce x MnO3 | 溶胶-凝胶法 | 135 ℃,>90% | n(Mn)/n(La)/n(Ce)= 1∶0.8∶0.2 | Ce掺杂增加了La-Mn氧化物的表面Mn4+含量、化学吸附氧 | [ | |
有TiO2负载体 | Mn-Ce-Ho/TiO2 | 浸渍法 | 140~220 ℃,>90% 180 ℃,约为96% | n(Mn)/n(Ce)/n(Ti)/ n(Ho)=0.4∶0.07∶1∶0.1 | 提高了Mn4+含量,使化学吸附氧增加 | [ |
Ru-Mn-Ce/TiO2 | 浸渍法 | 120~250 ℃,几乎100% | 无 | CMRT-X催化剂脱硝活性降低是由于过量的NH3氧化以及N2O副产物生成 | [ | |
W-Mn-Ce/TiO2 | 浸渍法 | 160 ℃,几乎100% | 无 | 热稳定性增加,增加了NH3吸附量和反应活性,但抑制NO吸附 | [ | |
Mn-Sb/TiO2 | 溶胶-凝胶法 | 100℃,约为95% | n(Mn)/n(Ti)=0.2 n(Sb)/n(Ti)=0.2 | 生成更多的还原物质、Mn4+和表面吸附氧 | [ | |
Tm-MnO x /TiO2 | 浸渍法 | 150~270 ℃,几乎100% | n(Mn)/n(Ti)=1∶3 n(Tm)/n(Ti)=0.1∶1 | 提高了催化剂的表面酸性、还原性、Mn4+和表面化学吸附氧浓度 | [ | |
Sm-Mn/TiO2 | 超声波浸渍法 | 110~250 ℃,大于80% | n(Mn)/n(Sm)=2∶1 | 改善了MnO x 在催化剂表面的分散性,增加了比表面积、路易斯酸位点和O α 的相对浓度 | [ |
表4
不同MnO x 催化剂抗性及效率
催化剂种类 | 制备方法 | 烟气工况 | 脱硝效率 | 参考文献 |
---|---|---|---|---|
Ce0.4Mn/TiO2 | 反向共沉淀法 | GSHV=44 000 h-1, 5%H2O+220 mg/m3 SO2 | 200 ℃-99%下降到73%-4 h | [ |
Fe0.2Co0.4Mn-Ce/TiO2 | 湿式浸渍法 | GSHV=12 000 h-1, 10%H2O+440 mg/m3 SO2 | 200 ℃-98%下降到90%-4 h | [ |
Co1Mn4Ce5O x | 共沉淀法 | GSHV=48 000 h-1, 10%H2O+330 mg/m3 SO2 | 175 ℃-91%下降到73%-6 h | [ |
Ni1Mn4Ce5O x | 175 ℃-91%下降到76%-6 h | [ | ||
Mn-Eu/TiO2 | 溶胶-凝胶法 | GSHV=108 000 h-1,10%H2O+220 mg/m3 SO2 | 150 ℃-85%下降到70%-25 h | [ |
Nb2O5-Mn-Ce/AC | 湿式浸渍法 | GSHV=14 500 h-1, 350 mg/m3 SO2 | 225 ℃-85%下降到70%-3.5 h | [ |
表5
不同负载体的SCR催化剂的性质及特点
负载体 | 晶型 | 负载体特性 | 常见活性组分 | 催化剂的特性 | |
---|---|---|---|---|---|
TiO2 | 八面体 | 弱酸性或无酸性负载,具有路易斯酸性中心,适合负载非惰性金属氧化物 | MnO x /TiO2 | 在高Mn负载量下,以微晶和聚合物的形式存在,促进脱硝反应 | |
MnO x -CeO2/TiO2 | 在高Mn负载量下,复合催化剂抗水性良好 | ||||
Fe-Mn-Ce/TiO2 | TiO2使活性组分均匀分布在负载体上 | ||||
γ- Al2O3 | 八面体 | 支撑和均匀分散活性成分,具有良好分散性、适度氧化还原性、较多酸性位 | MnO x /γ-Al2O3 | 具有良好分散性、适度氧化还原性、较多酸性位、优良NOx吸附性能以及含有丰富的Mn4+ | |
MnO x -CeO2/Al2O3 | Al3+的引入可以减小CeO2-MnO x 催化剂的晶粒尺寸,且Al3+显著增加了其比表面积和孔容,这是由于微晶尺寸的减小 | ||||
CeO2 | 三角双锥 | CeO2与其他金属氧化物之间的协同作用能提高催化剂活性、选择性及稳定性 | LaMnO3/CeO2 | LaMnO3和CeO2之间的相互作用在低温段有利于晶格氧的移动,促进部分NO氧化成NO2,具有较好的催化性能 | |
CuO/CeO2 | 在高温下不会形成复合物,热稳定性良好 | ||||
SiO2 | 表面不存在空位 | 酸性氧化物,化学性质比较稳定,具有较好催化效率、催化活性、催化剂负载的牢固性 | V-Mo-Ce/TiO2-SiO2 | SiO2可以显著增加比表面积,并影响表面原子间的相互作用;SiO2对于催化剂的脱硝性能影响较小,但在SO2存在下表现出较好的催化活性 | |
分子筛 | 四面体 | 具有规则、稳定的骨架结构和较高的比表面积,及其较高的热和水热稳定性,确保了活性金属的高度分散,以及反应物和产物的高效扩散,促进反应的迅速进行 | Fe基 Cu基 | ZSM、SSZ、SAPO等系列 | ①在通电的条件下,Mn的引入提高了Mn-Cu/ZSM-5催化剂的催化性能;②Cu/ZSM-5在NH3存在时的产物是NH4HSO4,且NH4HSO4会与Cu(HSO4)2相互转化,控制NH3的量能提高对Cu/SSZ-13回收效果;③Cu-SSZ-13催化剂显示出优异的NH3-SCR反应性和较强的SO2耐受性 |
[1] | 《国家环境保护标准“十三五”发展规划》印发[J].中国印刷, 2017, 35(5): 9. |
Issued by《Thirteenth Five-year Development Planning of National Standards for Environmental Protection》[J].China Print, 2017, 35(5): 9. | |
[2] | SHI Yun, XIA Yinfeng, LU Bihong, et al.Emission inventory and trends of NO x for China,2000—2020[J].Journal of Zhejiang University SCIENCE A, 2014, 15(6): 454-464. |
[3] | 汤常金, 孙敬方, 董林.超低温(<150 ℃)SCR脱硝技术研究进展[J].化工学报, 2020, 71(11): 4873-4884, 5362. |
TANG Changjin, SUN Jingfang, DONG Lin.Recent progress on elimination of NO x from flue gas via SCR technology under ultra-low temperatures(150 ℃)[J].CIESC Journal, 2020, 71(11): 4873-4884, 5362. | |
[4] | 高翔, 卢徐节, 胡明华.低温SCR脱硝催化剂综述[J].江汉大学学报:自然科学版, 2014, 42(2): 12-18. |
GAO Xiang, LU Xujie, HU Minghua.Review on low-temperature SCR denitration catalysts[J].Journal of Jianghan University:Natural Science Edition, 2014, 42(2): 12-18. | |
[5] | DUNN J P, STENGER H G Jr, WACHS I E.Oxidation of SO2 over supported metal oxide catalysts[J].Journal of Catalysis, 1999, 181(2): 233-243. |
[6] | LI Yuran, XIONG Jin, LIN Yuting, et al.Distribution of SO2 oxidation products in the SCR of NO over V2O5/TiO2 catalysts at different temperatures[J].Industrial & Engineering Chemistry Research, 2020, 59(11): 5177-5185. |
[7] | WANG Xiangmin, DU Xuesen, YANG Guangpeng, et al.Chemisorption of NO2 on V-based SCR catalysts:A fundamental study toward the mechanism of“fast SCR” reaction[J].The Journal of Physical Chemistry C, 2019, 123(33): 20451-20458. |
[8] | VUONG T H, RADNIK J, RABEAH J, et al.Efficient VOx/Ce1 - x Ti x O2 catalysts for low-temperature NH3-SCR:Reaction mechanism and active sites assessed by in situ/operando spectroscopy[J].ACS Catalysis,2017, 7(3): 1693-1705. |
[9] | LIU Zhiming, ZHANG Shaoxuan, LI Junhua, et al.Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO x by NH3 [J].Applied Catalysis B:Environmental, 2014, 158-159: 11-19. |
[10] | GUAN Bin, LIN He, ZHU Lin, et al.Selective catalytic reduction of NO x with NH3 over Mn,Ce substitution Ti0.9V0.1O2- δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J].The Journal of Physical Chemistry C, 2011, 115(26): 12850-12863. |
[11] | LU Qiang, PEI Xinqi, WU Yangwen, et al.Deactivation mechanism of the commercial V2O5-MoO3/TiO2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plan- ts[J].Energy & Fuels, 2020, 34(4): 4865-4873. |
[12] | PEREZ-ALONSO F J, MELIÁN-CABRERA I, GRANADOS M L, et al.Synergy of Fe x Ce1- x O2 mixed oxides for N2O decomposition[J].Journal of Catalysis, 2006, 239(2): 340-346. |
[13] | ZHANG Kai, WANG Jingjing, GUAN Pufang, et al.Low-temperature NH3-SCR catalytic characteristic of Ce-Fe solid solutions based on rare earth concentrate[J].Materials Research Bulletin, 2020,128.Doi:10.1016/j.materresbull.2020.110871 . |
[14] | LV Hong, TU Hengyong, ZHAO Binyuan, et al.Synthesis and electrochemical behavior of Ce1- x Fe x O2- δ as a possible SOFC anode materials[J].Solid State Ionics, 2007, 177(39/40): 3467-3472. |
[15] | LI Kongzhai, HANEDA M, NING Peihong, et al.Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatme-nt[J].Applied Surface Science, 2014, 289: 378-383. |
[16] | ZHAN Sihui, ZHANG He, ZHANG Yu, et al.Efficient NH3-SCR removal of NO x with highly ordered mesoporous WO3(χ)-CeO2 at low temperatures[J].Applied Catalysis B:Environmental, 2017, 203: 199-209. |
[17] | LIAN Zhihua, LIU Fudong, HE Hong, et al.Nb-doped VO x /CeO2 catalyst for NH3-SCR of NO x at low temperatures[J].RSC Advances, 2015, 5(47): 37675-37681. |
[18] | SHEN Boxiong, WANG Yinyin, WANG Fumei, et al.The effect of Ce-Zr on NH3-SCR activity over MnO x (0.6)/Ce0.5Zr0.5O2 at low temperature[J].Chemical Engineering Journal, 2014, 236: 171-180. |
[19] | SOHOT M R, JAIS U S, SULAIMAN M R.Preparation and performance of V2O5-CeO2-SiO2 catalyst for the selective catalytic reduction(SCR) of NO x with NH3 at low temperature[C]//IEEE. 2012 IEEE Symposium on Business,Engineering and Industrial Applications, 2012: 787-793. |
[20] | HE Junyao, KANG Running, WEI Xiaolin, et al.Comparative study of MCe0.75Zr0.25O y (M=Cu,Mn,Fe) catalysts for selective reduction of NO by CO:Activity and reaction pathways[J].Carbon Resources Conversion, 2021, 4: 205-213. |
[21] | CHEN Wanmiao, QU Zan, HUANG Wenjun, et al.Novel effect of SO2 on selective catalytic oxidation of slip ammonia from coal-fired flue gas over IrO2 modified Ce-Zr solid solution and the mechanism investigation[J].Fuel, 2016, 166: 179-187. |
[22] | ARFAOUI J, GHORBEL A, PETITTO C, et al.New MoO3-CeO2-ZrO2 and WO3-CeO2-ZrO2 nanostructured mesoporous aerogel catalysts for the NH3-SCR of NO from diesel engine exhaust[J].Journal of Industrial and Engineering Chemistry, 2021, 95: 182-189. |
[23] | SUN Xiaoliang, GONG Cairong, LV Gang, et al.Effect of Ce/Zr molar ratio on the performance of Cu-Ce x -Zr1- x /TiO2 catalyst for selective catalytic reduction of NO x with NH3 in diesel exhaust[J].Materials Research Bulletin, 2014, 60: 341-347. |
[24] | TAN Wei, WANG Jiaming, LI Lulu, et al.Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal[J].Journal of Hazardous Materials, 2020,388.Doi:10.1016/j.jhazmat.2019.121729. |
[25] | WEI Lu, CUI Suping, GUO Hongxia, et al.The mechanism of the deactivation of MnO x /TiO2 catalyst for low-temperature SCR of NO[J].Applied Surface Science, 2019, 483: 391-398. |
[26] | CHEN Jiayu, FU Peng, LV Daofei, et al.Unusual positive effect of SO2 on Mn-Ce mixed-oxide catalyst for the SCR reaction of NO x with NH3 [J].Chemical Engineering Journal, 2021,407.Doi:10.1016/j.cej.2020.127071 . |
[27] | LIU Zhiming, YI Yang, ZHANG Shaoxuan, et al.Selective catalytic reduction of NO x with NH3 over Mn-Ce mixed oxide catalyst at low temperatures[J].Catalysis Today, 2013, 216: 76-81. |
[28] | SHI Xueke, GUO Jiaxiu, SHEN Ting, et al.Improvement of NH3-SCR activity and resistance to SO2 and H2O by Ce modified La-Mn perovskite catalyst[J].Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 102-111. |
[29] | THIRUPATHI B, SMIRNIOTIS P G.Co-doping a metal(Cr,Fe,Co,Ni,Cu,Zn,Ce,and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures[J].Applied Catalysis B:Environmental, 2011, 110: 195-206. |
[30] | LI Wei, ZHANG Cheng, LI Xin, et al.Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO x with NH3:Evaluation and characterization[J].Chinese Journal of Catalysis, 2018, 39(10): 1653-1663. |
[31] | REN Zhixiang, ZHANG Hongliang, WANG Guangying, et al.Effect of calcination temperature on the activation performance and reaction mechanism of Ce-Mn-Ru/TiO2 catalysts for selective catalytic reduction of NO with NH3 [J].ACS Omega, 2020, 5(51): 33357-33371. |
[32] | NAM K B, KWON D W, HONG S C.DRIFT study on promotion effects of tungsten-modified Mn/Ce/Ti catalysts for the SCR reaction at low-temperature[J].Applied Catalysis A:General, 2017, 542: 55-62. |
[33] | GUO Ruitang, SUN Xiao, LIU Jian, et al.Enhancement of the NH3-SCR catalytic activity of MnTiO x catalyst by the introduction of Sb[J].Applied Catalysis A:General, 2018, 558: 1-8. |
[34] | NIU Cihang, WANG Baorui, XING Yi, et al.Thulium modified MnO x /TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia[J].Journal of Cleaner Production, 2021,290.Doi:10.1016/j.jclepro.2021.125858 . |
[35] | LIU Lijun, XU Kai, SU Sheng, et al.Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature[J].Applied Catalysis A:General, 2020,592.Doi:10.1016/j.apcata.2020.117413 . |
[36] | 杜凯敏, 秦刚华, 祁志福, 等. NH3-SCR脱硝催化剂的中毒及其抗毒策略[J].现代化工, 2021, 41(11): 58-62. |
DU Kaimin, QIN Ganghua, QI Zhifu, et al.Poisoning of NH3-SCR denitrification catalyst and resistance strategy[J].Modern Chemical Industry, 2021, 41(11): 58-62. | |
[37] | CHEN Cheng, XIE Huidong, HE Peiwen, et al.Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation,co-precipitation and impregnation method[J].Applied Surface Science, 2022,571.Doi:10.1016/j.apsusc.2021.151285 . |
[38] | WANG Fumei, SHEN Boxiong, ZHU Shaowen, et al.Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J].Fuel, 2019, 249: 54-60. |
[39] | GAO Fengyu, TANG Xiaolong, YI Honghong, et al.Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnO x -CeO2 catalysts for SCR of NO x with NH3 at low temperature[J].Chemical Engineering Journal, 2017, 317: 20-31. |
[40] | LIU Jian, GUO Ruitang, LI Mingyuan, et al.Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification:A mechanism study[J].Fuel, 2018, 223: 385-393. |
[41] | ZHOU Yuhan, SU Buxin, REN Shan, et al.Nb2O5-modified Mn-Ce/AC catalyst with high ZnCl2 and SO2 tolerance for low-temperature NH3-SCR of NO[J].Journal of Environmental Chemical Engineering, 2021, 9(5).Doi:10.1016/j.jece.2021.106323 . |
[42] | SHEN Boxiong, LIU Ting, ZHAO Ning, et al.Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3 [J].Journal of Environmental Sciences, 2010, 22(9): 1447-1454. |
[43] | LEE S M, PARK K H, HONG S C.MnO x /CeO2-TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J].Chemical Engineering Journal, 2012, 195-196: 323-331. |
[44] | ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, et al.Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 [J].Applied Catalysis B:Environmental, 2007, 76(1/2): 123-134. |
[45] | TSYRULNIKOV P G, TSYBULYA S V, KRYUKOVA G N, et al.Phase transformations in the thermoactivated MnO x -Al2O3 catalytic system[J].Journal of Molecular Catalysis A:Chemical, 2002, 179(1/2): 213-220. |
[46] | 付金艳, 王振峰, 白心蕊, 等. γ-Al2O3酸性修饰稀土尾矿NH3-SCR脱硝性能[J].中国环境科学, 2020, 40(9): 3741-3747. |
FU Jinyan, WANG Zhenfeng, BAI Xinrui, et al.Denitration performance of NH3-SCR from γ-Al2O3 acid modified rare earth tailings[J].China Environmental Science, 2020, 40(9): 3741-3747. | |
[47] | YAO Xiaojiang, LI Lulu, ZOU Weixin, et al.Preparation,characterization,and catalytic performance of high efficient CeO2-MnO x -Al2O3 catalysts for NO elimination[J].Chinese Journal of Catalysis, 2016, 37(8): 1369-1380. |
[48] | FRANCE L J, YANG Qing, LI Wan, et al.Ceria modified FeMnO x —Enhanced performance and sulphur resistance for low-temperature SCR of NO x [J].Applied Catalysis B:Environmental, 2017, 206: 203-215. |
[49] | 李军, 潘磊, 王际童, 等. 球形活性炭担载MnO x -CeO2和三聚氰胺的低温脱硝行为研究[J].无机材料学报, 2016, 31(11): 1205-1211. |
LI Jun, PAN Lei, WANG Jitong, et al.Low-temperature removal of NO by spherical activated carbon loaded with MnO x -CeO2 and melamine[J].Journal of Inorganic Materials, 2016, 31(11): 1205-1211. | |
[50] | 蒋晓原, 丁光辉, 刘琪, 等. CuO在CeO2和γ-Al2O3上的表面性质及对NO+CO反应性能的研究[J].浙江大学学报:理学版, 2003, 30(3): 289-295. |
JIANG Xiaoyuan, DING Guanghui, LIU Qi, et al.Studies on the surface properties of CuO supported on CeO2 and γ-Al2O3 and its reaction properties for NO+CO reaction[J].Journal of Zhejiang University:Sciences Edition, 2003, 30(3): 289-295. | |
[51] | WANG Tao, ZHANG Xinyu, LIU Jun, et al.Effects of temperature on NO x removal with Mn-Cu/ZSM5 catalysts assisted by plasma[J].Applied Thermal Engineering, 2018, 130: 1224-1232. |
[52] | WANG Chen, CHEN Zexiang, WANG Jun, et al.Unraveling the nature of sulfur poisoning on Cu/SSZ-13 as a selective reduction catalyst[J].Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 38-47. |
[53] | YU Rui, ZHAO Zhenchao, HUANG Shengjun, et al.Cu-SSZ-13 zeolite-metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NO x [J].Applied Catalysis B:Environmental, 2020,269.Doi:10.1016/j.apcatb.2020.118825 . |
[1] | 李可君,李芳芹,任建兴,刘鑫,陈林峰,蔡健明. NH3-SCR脱硝催化剂现状及中毒失活现象研究进展[J]. 无机盐工业, 2022, 54(11): 18-24. |
[2] | 周安慧,邱兆富,杨骥,严瑞琪,卞晓彤. 废SCR催化剂中的污染物及环境风险分析[J]. 无机盐工业, 2021, 53(2): 11-16. |
[3] | 李朴芳,穆林,王社斌. 碳热还原/熔融分离废SCR催化剂中有价金属[J]. 无机盐工业, 2020, 52(1): 93-98. |
[4] | 刘子林, 王宝冬, 马瑞新, 何发泉, 孙 琦. 废SCR催化剂钠化焙烧回收钨和钒的机理探究[J]. 无机盐工业, 2016, 48(7): 63-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|