[1] |
孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业, 2021, 30(2):1-6.
|
[2] |
BENNACEUR K, GIELEN D, KERR T, et al. CO2 capture and storage:A key carbon abatement option[M]. Paris:International Energy Agency, 2008.
|
[3] |
KUMAR A, MADDEN D G, LUSI M, et al. Direct air capture of CO2 by physisorbent materials[J]. Angewandte Chemie, 2016, 127(480):14580-14585.
|
[4] |
EVGENIA M, SOLOMOM B, PAUL S, et al. CO2 capture and storage(CCS) cost reduction via infrastructure right-sizing[J]. Chemical Engineering Research and Design, 2017, 119:130-139.
|
[5] |
陆诗建, 高丽娟, 王家凤, 等. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化工进展, 2020, 39(2):728-737.
|
[6] |
华贲. 低碳时代石油化工产业资源与能源走势[J]. 化工学报, 2013, 64(1):76-83.
|
[7] |
谢和平, 谢凌志, 王昱飞, 等. 全球二氧化碳减排不应是CCS,应是CCU[J]. 四川大学学报, 2012, 44:1-5.
|
[8] |
BOBICKI E R, LIU Q, XU Z, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy & Combustion Science, 2012, 38(2):302-320.
|
[9] |
ARIAS B, ALONSO M, ABANADES C. CO2 capture by calcium looping at relevant conditions for cement plants:Experimental testing in a 30 kWh Pilot Plan[J]. Industrial & Engineering Chemistry Research, 2017, 56(10):2634-2640.
|
[10] |
向乐凯, 李枫, 赵宁, 等. 二氧化碳鼓泡碳化法制备碳酸钙的研究[J]. 无机盐工业, 2016, 48(8):46-51.
|
[11] |
国际能源署最新版CCS技术路线图即将出炉[J]. 低碳世界, 2013(6):10.
|
[12] |
WANG W, HU M, ZHENG Y, et al. CO2 fixation in Ca2+-/Mg2+-rich aqueous solutions through enhanced carbonate precipitation[J]. Ind.Eng.Chem.Res., 2011, 50(13):8333-8339.
|
[13] |
张密林, 马立世, 景晓燕, 等. 海水─有机胺体系吸收CO2的研究[J]. 应用科技, 2000(3):21-22.
|
[14] |
CHERNOVA N I, KISELEVA S V. The wastewater using in technologies of bio-oil production from microalgae:CO2 capture and storage[J]. IOP Conference Series Materials Science and Engineering, 2021, 1037(1).Doi: 10.1088/1757-899X/1037/1/012045.
|
[15] |
ZHAO Y, CAO H, XIE Y, et al. Mechanism studies of a CO2 participant softening pretreatment process for seawater desalination[J]. Desalination, 2016, 393:166-173.
|
[16] |
ZHAO Y, ZHANG Y, LIU J, et al. Trash to treasure:Seawater pretreatment by CO2 mineral carbonation using brine pretreatment waste of soda ash plant as alkali source[J]. Desalination, 2017, 407:85-92.
|
[17] |
XU T, HUANG C. Electrodialysis-based separation technologies:A critical review[J]. AIChE, 2008, 54:3147-3159.
|
[18] |
SHEN J, YU J, HUANG J, et al. Preparation of highly pure tetrapropyl ammonium hydroxide using continuous bipolar membrane electrodialysis[J]. Chem.Eng., 2013, 220:311-319.
|
[19] |
IBANEZ R, PEREZ-GONZALEZ A, GOMEZ P, et al. Acid and base recovery from softened reverse osmosis(RO) brines.Experimental assessment using model concentrates[J]. Desalination, 2013, 309:165-170.
|
[20] |
YANG Y, GAO X, FAN A, et al. An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis[J]. Membr.Sci., 2014, 449:119-126.
|
[21] |
NAGASAWA H, YAMASAKI A, IIZUKA A, et al. A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis[J]. AIChE, 2009, 55:3286-3293.
|
[22] |
ZHAO Y, WANG J, JI Z, et al. A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer[J]. Chem.Eng., 2020, 381.Doi: 10.1016/j.cej.2019.122542.
|
[23] |
ZHAO Y, WANG L, JI Z, et al. Collaborative disposal of problematic calcium ions in seawater and carbon and sulfur pollutants in flue gas by bipolar membrane electrodialysis[J]. Desalination, 2020, 494.Doi: 10.1016/j.desal.2020.114654.
|