Inorganic Chemicals Industry >
Recent progress of NASICON-type Na1+x Zr2Si x P3-x O12 solid electrolyte for sodium metal batteries
Received date: 2024-06-14
Online published: 2024-07-01
Lithium-ion batteries are commercialized due to their high working voltage and energy density.However,the limited lithium resources have hampered their widespread application.Sodium-ion batteries(SIBs) have similar electrochemical behavior and rich sodium salt resources,which have attracted wide attention.The current SIBs use organic electrolytes,which have many safety issues such as leakage and combustion,and the use of solid-state electrolytes can effectively solve the above problems.However,the ionic conductivity of this electrolyte needs to be further improved,and the problems of the consistency of the synthesized material and the large interface impedance between the electrode and electrolyte limit its practical application.To settle the problem of ionic conductivity,the effects of substituted different multi-valence metal ions were summarized and analyzed.In view of the interface problems,the existing interface modification methods of Na1+x Zr2Si x P3-x O12 electrolytes from the cathode and anode sides were reviewed and analyzed.Finally,the development direction of Na1+x Zr2Si x P3-x O12 solid electrolytes was forecasted,which was expected to promote the development of solid SIBs.
XU Xijun , LIN Jianfeng , LUO Xiongwei , ZHAO Jingwei , HUO Yanping . Recent progress of NASICON-type Na1+x Zr2Si x P3-x O12 solid electrolyte for sodium metal batteries[J]. Inorganic Chemicals Industry, 2024 , 56(11) : 1 -14 . DOI: 10.19964/j.issn.1006-4990.2024-0275
1 | 李亚广,韩东战,齐利娟.废旧锂离子电池预处理及电解液回收技术研究现状[J].无机盐工业,2024,56(02):1-10. |
LI Yaguang, HAN Dongzhan, QI Lijuan.Research status of pretreatment and electrolyte recovery of waste lithium-ion batteries[J].Inorganic Chemical Industry,2024,56(02):1-10. | |
2 | LI Chi, LI Rui, LIU Kaining,et al.NaSICON:A promising solid electrolytefor solid-state sodium batteries[J].Interdisciplinary Materials,2022,1(3):396-416. |
3 | LI Yu, ZHANG Jiawei, CHEN Qingguo,et al.Emerging of heterostructure materials in energy storage:A review[J].Advanced Materials,2021,33(27):2100855. |
4 | 刘德新,马腾跃,安金玲,等.锰基钠离子电池正极材料设计及电化学性能研究[J].无机盐工业,2024,56(3):51-55. |
LIU Dexin, MA Tengyue, AN Jinling,et al.Study on cathode material design and electrochemical properties of manganese-based sodium ion battery[J].Inorganic Chemicals Industry,2024,56(3):51-55. | |
5 | WU Fan, WU Shaoyang, YE Xin,et al.Research progress of high-entropy cathode materials for sodium-ion batteries[J].Chinese Chemical Letters,2024:109851. |
6 | SHEN Liying, LI Yong, ROY S,et al.A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries[J].Chinese Chemical Letters,2021,32(11):3570-3574. |
7 | SHI Jingyu, WU Xiaofeng, CHEN Yutong,et al.Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte[J].Chinese Chemical Letters,2024:109938. |
8 | 彭晨熹,刘军.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].无机盐工业,2023,55(10):1-12,69. |
PENG Chenxi, LIU Jun.Research progress of layered transition metal oxides cathode materials for sodium-ion batteries[J].Inorganic Chemicals Industry,2023,55(10):1-12,69. | |
9 | LI Zhaopeng, LIU Pei, ZHU Kunjie,et al.Solid-state electrolytes for sodium metal batteries[J].Energy & Fuels,2021,35(11):9063-9079. |
10 | LI Yang, LI Meng, SUN Zheng,et al.Recent advance on NASICON electrolyte in solid-state sodium metal batteries[J].Energy Storage Materials,2023,56:582-599. |
11 | RAO Y B, BHARATHI K K, PATRO L N.Review on the synthesis and doping strategies in enhancing the Na ion conductivity of Na3Zr2Si2PO12(NASICON) based solid electrolytes[J].Solid State Ionics,2021,366:115671. |
12 | LU Yong, LI Lin, ZHANG Qiu,et al.Electrolyte and interface engineering for solid-state sodium batteries[J].Joule,2018,2(9):1747-1770. |
13 | HONG H Y P.Crystal structures and crystal chemistry in the system Na1+ x Zr2Si x P3- x O12 [J].Materials Research Bulletin,1976, 11(2):173-182. |
14 | HOU Wenru, GUO Xianwei, SHEN Xuyang,et al.Solid electrolytes and interfaces in all-solid-state sodium batteries:Progress and perspective[J].Nano Energy,2018,52:279-291. |
15 | GROSS M M, PERCIVAL S J, SMALL L J,et al.Low-temperature molten sodium batteries[J].ACS Applied Energy Materials,2020,3(11):11456-11462. |
16 | TSAI C L, LAN Tu, DELLEN C,et al.Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diffusion[J].Journal of Power Sources,2020,476:228666. |
17 | 刘创,卢海燕,曹余良.钠离子电池合金类负极材料的研究进展[J].中国材料进展,2017,36(10):718-727. |
LIU Chuang, LU Haiyan, CAO Yuliang.Research progress on alloy anode materials for sodium ion batteries[J].Materials China,2017,36(10):718-727. | |
18 | NIAZMAND M, KHAKPOUR Z, MORTAZAVI A.Electrochemical properties of nanostructure NASICON synthesized by chemical routes:A comparison between coprecipitation and sol-gel[J].Journal of Alloys and Compounds,2019,798:311-319. |
19 | DHAS N A, PATIL K C.Controlled combustion synthesis and properties of fine-particle NASICON materials[J].Journal of Materials Chemistry,1994,4(3):491-497. |
20 | CLEARFIELD A, JERUS P, COTMAN R N.Hydrothermal and solid state synthesis of sodium zirconium silicophosphates[J].Solid State Ionics,1981,5:301-304. |
21 | FUENTES R O, FIGUEIREDO F M, SOARES M R,et al.Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors[J].Journal of the European Ceramic Society,2005,25(4):455-462. |
22 | 李榅凯,赵宁,毕志杰,等.钠离子电池Na3Zr2Si2PO12陶瓷电解质的喷雾干燥法制备及性能优化[J].无机材料学报,2022,37(2):189-196. |
LI Wenkai, ZHAO Ning, BI Zhijie,et al.Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery:Preparation using spray-drying method and its property[J].Journal of Inorganic Materials,2022,37(2):189-196. | |
23 | LIU Saiyue, ZHOU Chang, WANG You,et al.Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J].ACS Applied Materials & Interfaces,2020,12(3):3502-3509. |
24 | YANG Guanming, ZHAI Yanfang, YAO Jianyao,et al.A facile method for the synthesis of a sintering dense nano-grained Na3Zr2Si2PO12 Na-ion solid-state electrolyte[J].Chemical Communications,2021,57(33):4023-4026. |
25 | DUBEY B P, VINODHKUMAR A, SAHOO A,et al.Microstructural tuning of solid electrolyte Na3Zr2Si2PO12 by polymer-assisted solution synthesis method and its effect on ionic conductivity and dielectric properties[J].ACS Applied Energy Materials,2021,4(6):5475-5485. |
26 | YANG Zhendong, TANG Bin, XIE Zhaojun,et al.NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries[J].ChemElectroChem,2021,8(6):1035-1047. |
27 | NARAYANAN S, REID S, BUTLER S,et al.Sintering temperature,excess sodium,and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12 [J].Solid State Ionics,2019,331:22-29. |
28 | MA Qianli, GUIN M, NAQASH S,et al.Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J].Chemistry of Materials,2016,28(13):4821-4828. |
29 | CHEN Shaojie, NIE Lu, HU Xiangchen,et al.Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries[J].Advanced Materials,2022,34(33):2200430. |
30 | ZHANG Lixiao, LIU Yimeng, YOU Ya,et al.NASICONs-type solid-state electrolytes:The history,physicochemical properties,and challenges[J].Interdisciplinary Materials,2023,2(1):91- 110. |
31 | RUAN Yanli, GUO Fang, LIU Jingjing,et al.Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery[J].Ceramics International,2019,45(2):1770-1776. |
32 | CAO Xiaoguo, ZHANG Xiaohua, TAO Tao,et al.Effects of antimo-ny tin oxide(ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J].Ceramics International,2020,46(6):8405-8412. |
33 | DZIUBANIUK M, TRZ?SIEC M, PASIERB P,et al.Application of anion-conducting lanthanum oxychloride for potentiometric chlorine gas sensors[J].Solid State Ionics,2012,225:324-327. |
34 | 才绅.NASICON型电解质界面优化及在固态钠电池中的应 用[D].唐山:华北理工大学,2022. |
CAI Shen.Interface optimization of NASICON electrolyte and its application in solid-state sodium battery[D].Tangshan:North China University of Science and Technology,2022. | |
35 | PARK H, JUNG K, NEZAFATI M,et al.Sodium ion diffusion in nasicon(Na3Zr2Si2PO12) solid electrolytes:Effects of excess sodium[J].ACS Applied Materials & Interfaces,2016,8(41):27814-27824. |
36 | SHAO Yuanjun, ZHONG Guiming, LU Yaxiang,et al.A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J].Energy Storage Materials,2019,23:514-521. |
37 | LU Yao, ALONSO J A, YI Qiang,et al.A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J].Advanced Energy Materials,2019,9(28):1901205. |
38 | BELL N S, EDNEY C, WHEELER J S,et al.The influences of excess sodium on low-temperature NASICON synthesis[J].Journal of the American Ceramic Society,2014,97(12):3744-3748. |
39 | KIDA T, MIYACHI Y, SHIMANOE K,et al.NASICON thick film-based CO2 sensor prepared by a sol-gel method[J].Sensors and Actuators B:Chemical,2001,80(1):28-32. |
40 | ZHANG Shuang, QUAN Baofu, ZHAO Zhiyong,et al.Preparation and characterization of NASICON with a new sol-gel process[J].Materials Letters,2004,58(1-2):226-229. |
41 | YADAV P, BHATNAGAR M C.Structural studies of NASICON material of different compositions by sol-gel method[J].Ceramics International,2012,38(2):1731-1735. |
42 | GOODENOUGH J B, PARK K S.The Li-ion rechargeable battery:A perspective[J].Journal of the American Chemical Society,2013,135(4):1167-1176. |
43 | TRAVERSA E, AONO H, SADAOKA Y,et al.Electrical properties of sol-gel processed NASICON having new compositions[J].Sensors and Actuators B:Chemical,2000,65(1/2/3):204-208. |
44 | YOLDAS B E, LLOYD I K.Nasicon formation by chemical polymerization[J].Materials Research Bulletin,1983,18(10):1171-1177. |
45 | 章志珍,施思齐,胡勇胜,等.溶胶-凝胶法制备钠离子固态电解质Na3Zr2Si2PO12及其电导性能研究[J].无机材料学报,2013,28(11):1255-1260. |
ZHANG Zhizhen, SHI Siqi, HU Yongsheng,et al.Sol-gel synthesis and conductivity properties of sodium ion solid state electrolytes Na3Zr2Si2PO12 [J].Journal of Inorganic Materials,2013, 28(11):1255-1260. | |
46 | YANG Jing, LIU Gaozhan, AVDEEV M,et al.Ultrastable all-solid-state sodium rechargeable batteries[J].ACS Energy Letters,2020,5(9):2835-2841. |
47 | SUN Fei, XIANG Yuxuan, SUN Qian,et al.Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes[J].Advanced Functional Materials,2021,31(31):2102129. |
48 | HAN Fudong, YUE Jie, CHEN Cheng,et al.Interphase engineering enabled all-ceramic lithium battery[J].Joule,2018,2(3):497-508. |
49 | WANG Chengwei, ZHONG Wei, PING Weiwei,et al.Rapid synthesis and sintering of metals from powders[J].Advanced Science,2021,8(12):2004229. |
50 | ZUO Daxian, YANG Lin, ZOU Zheyi,et al.Ultrafast synthesis of NASICON solid electrolytes for sodium-metal batteries[J].Advanced Energy Materials,2023,13(37):2301540. |
51 | LI Fupeng, HOU Minjie, ZHAO Lanqing,et al.Electrolyte and interface engineering for solid-state sodium batteries[J].Energy Storage Materials,2024,65:103181. |
52 | HUANG Jiawen, WU Kuan, XU Gang,et al.Recent progress and strategic perspectives of inorganic solid electrolytes:Fundamentals,modifications,and applications in sodium metal batteries[J].Chemical Society Reviews,2023,52(15):4933-4995. |
53 | SAMIEE M, RADHAKRISHNAN B, RICE Zane,et al.Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor:Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases[J].Journal of Power Sources,2017,347:229-237. |
54 | TAKAHASHI T, KUWABARA K, SHIBATA M.Solid-state ionics-conductivities of Na+ ion conductors based on NASICON[J].Solid State Ionics,1980,1(3-4):163-175. |
55 | SONG Shufeng, DUONG H M, KORSUNSKY A M,et al.A Na+ superionic conductor for room-temperature sodium batteries[J].Scientific Reports,2016,6:32330. |
56 | JOLLEY A G, COHN G, HITZ G T,et al.Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12 [J].Ionics,2015,21(11):3031-3038. |
57 | CHEN Dan, LUO Fa, ZHOU Wancheng,et al.Influence of Nb5+,Ti4+,Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J].Journal of Alloys and Compounds,2018,757:348-355. |
58 | ZHANG Qingkai, LIANG Feng, QU Tao,et al.Effect on ionic conductivity of Na3+ x Zr2- x M x Si2PO12(M=Y,La) by doping rare-earth elements[J].IOP Conference Series:Materials Science and Engineering,2018,423:012122. |
59 | FUENTES R O, FIGUEIREDO F M, MARQUES F M B,et al.Influence of microstructure on the electrical properties of NASICON materials[J].Solid State Ionics,2001,140(1/2):173-179. |
60 | RUAN Yanli, SONG Shidong, LIU Jingjing,et al.Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J].Ceramics International,2017,43(10):7810-7815. |
61 | ZHANG Zhizhen, ZHANG Qinghua, SHI Jinan,et al.A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J].Advanced Energy Materials,2017,7(4):1601196. |
62 | SUBRAMANIAN M A, RUDOLF P R, CLEARFIELD A.The preparation,structure,and conductivity of scandium-substituted NASICONs[J].Journal of Solid State Chemistry,1985,60(2):172-181. |
63 | PAL S K, SAHA R, KUMAR G V,et al.Designing high ionic conducting NASICON-type Na3Zr2Si2PO12 solid-electrolytes for Na-ion batteries[J].The Journal of Physical Chemistry C,2020, 124(17):9161-9169. |
64 | WANG Qiao, YU Chuang, LI Liping,et al.Sc-doping in Na3Zr2Si2PO12 electrolytes enables preeminent performance of solid-state sodium batteries in a wide temperature range[J].Energy Storage Materials,2023,54:135-145. |
65 | KHAKPOUR Z.Influence of M:Ce4+,Gd3+ and Yb3+ substituted Na3+ x Zr2- x M x Si2PO12 solid NASICON electrolytes on sintering,microstructure and conductivity[J].Electrochimica Acta,2016,196:337-347. |
66 | XIE Bingxing, JIANG Danyu, WU Jian,et al.Effect of substituting Ce for Zr on the electrical properties of NASICON materi-als[J].Journal of Physics and Chemistry of Solids,2016,88:104-108. |
67 | LIU Yujian, LIU Limin, PENG Jinsong,et al.A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm-1 prepared by solution-assisted solid-state reaction method[J].Journal of Power Sources,2022,518:230765. |
68 | 马嘉韩.过渡金属掺杂NASICON型固态电解质的制备及性能研究[D].唐山:华北理工大学,2019. |
MA Jiahan.Preparation and properties of transition metal doped NASICON solid electrolyte[D].Tangshan:North China University of Science and Technology,2019. | |
69 | LENG Haoyang, HUANG Jiajia, NIE Jiuyuan,et al.Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes[J].Journal of Power Sources,2018,391:170-179. |
70 | LENG Haoyang, NIE Jiuyuan, LUO Jian.Combining cold sintering and Bi2O3-activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures[J].Journal of Materiomics,2019,5(2):237-246. |
71 | YANG Jing, WAN Hongli, ZHANG Zhihua,et al.NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries[J].Rare Metals,2018,37(6):480-487. |
72 | SHEN Lin, YANG Jing, LIU G,et al.High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries[J].Materials Today Energy,2021,20:100691. |
73 | CHAKRABORTY A, THIRUPATHI R, BHATTACHARYYA S,et al.Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries[J].Journal of Power Sources,2023,572:233092. |
74 | LI Zuxiang, YANG Huijun, TANG Shunbao,et al.Phase relationship and electrical conductivity of Na3Zr2 x Ce x Si2PO12 system[J].Journal of Inorganic Material,1991,6:125–128. |
75 | ZHANG Zhizhen, ZOU Zheyi, KAUP K,et al.Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes[J].Advanced Energy Materials,2019,9(42):1902373. |
76 | RAN Lingbing, BAKTASH A, LI Ming,et al.Sc,Ge co-doping NASICON boosts solid-state sodium ion batteries' performan-ce[J].Energy Storage Materials,2021,40:282-291. |
77 | THIRUPATHI R, OMAR S.A strategic co-doping approach using Sc3+ and Ce4+ toward enhanced conductivity in NASICON-type Na3Zr2Si2PO12 [J].The Journal of Physical Chemistry C,2021,125(50):27723-27735. |
78 | HEO E, WANG J E, YUN J H,et al.Improving room temperature ionic conductivity of Na3– x K x Zr2Si2PO12 solid-electrolytes:Effects of potassium substitution[J].Inorganic Chemistry,2021,60(15):11147-11153. |
79 | LI Donglai, SUN Chen, WANG Chengzhi,et al.Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature[J].Energy Storage Materials,2023,54:403-409. |
80 | LUO Jing, ZHAO Gaolei, QIANG Wenjiang,et al.Synthesis of Na ion-electron mixed conductor Na3Zr2Si2PO12 by doping with transition metal elements (Co,Fe,Ni)[J].Journal of the American Ceramic Society,2022,105(5):3428-3437. |
81 | FUENTES R O, FIGUEIREDO F M, MARQUES F M B,et al.Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors[J].Journal of the European Ceramic Society,2001,21(6):737-743. |
82 | WANG Xinxin, CHEN Jingjing, MAO Zhiyong,et al.Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity[J].Chemical Engineering Journal,2022,427:130899. |
83 | SUN Fei, XIANG Yuxuan, SUN Qian,et al.Insight into ion diffusion dynamics/mechanisms and electronic structure of highly conductive sodium-rich Na3+ x La x Zr2- x Si2PO12(0≤x≤0.5) solid-state electrolytes[J].ACS Applied Materials & Interfaces,2021,13(11):13132-13138. |
84 | HUANG Congcai, YANG Guanming, YU Wenhao,et al.Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes[J].Journal of Alloys and Compounds,2021,855:157501. |
85 | MA Qianli, TSAI C L, WEI Xiankui,et al.Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm-1 and its primary applications in symmetric battery cells[J].Journal of Materials Chemistry A,2019,7(13):7766-7776. |
86 | TIAN Haoqing, LIU Shan, DENG Lijun,et al.New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability[J].Energy Storage Materials,2021,39:232-238. |
87 | VOGEL E M, CAVA R J, RIETMAN E.Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+ x Hf2Si x P3- x O12 [J].Solid State Ionics,1984,14(1):1-6. |
88 | MIAO Rijian, CAO Xiaoguo, WANG Wenguang,et al.Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte[J].Ceramics International,2021,47(12):17455-17462. |
89 | NOGUCHI Y, KOBAYASHI E, PLASHNITSA L S,et al.Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds[J].Electrochimica Acta,2013,101:59-65. |
90 | 杨菁,刘高瞻,沈麟,等.NASICON结构钠离子固态电解质及固态钠电池应用研究进展[J].储能科学与技术,2020,9(5):1284-1299. |
YANG Jing, LIU Gaozhan, SHEN Lin,et al.Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries[J].Energy Storage Science and Technology,2020,9(5):1284-1299. | |
91 | DAI Peng, SHI Chenguang, HUANG Zheng,et al.A new film-forming electrolyte additive in enhancing the interface of layered cathode and cycling life of sodium ion batteries[J].Energy Storage Materials,2023,56:551-561. |
92 | LIU Lilu, QI Xingguo, MA Qiang,et al.Toothpaste-like electrode:A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J].ACS Applied Materials & Interfaces,2016,8(48):32631-32636. |
93 | GAO Xinran, XING Zheng, WANG Mingyue,et al.Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries[J].Energy Storage Materials,2023,60:102821. |
94 | NIU Wei, CHEN Long, LIU Yongchang,et al.All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J].Chemical Engineering Journal,2020,384:123233. |
95 | GAO Hongcai, XUE Leigang, XIN Sen,et al.A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J].Angewandte Chemie,2017,56(20):5541-5545. |
96 | WANG Qianchen, LI Jingbo, JIN Haibo,et al.Prussian-blue materials:Revealing new opportunities for rechargeable batteries[J].InfoMat,2022,4(6):e12311. |
97 | YANG Jiayi, GAO Zhonghui, FERBER T,et al.Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries[J].Journal of Materials Chemistry A,2020,8(16):7828-7835. |
98 | ZHOU Weidong, LI Yutao, XIN Sen,et al.Rechargeable sodium all-solid-state battery[J].ACS Central Science,2017,3(1):52-57. |
99 | WANG Han, SUN Yongjiang, LIU Qing,et al.An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries[J].Journal of Energy Chemistry,2022,74:18-25. |
100 | GAO Zhonghui, YANG Jiayi, YUAN Haiyang,et al.Stabilizing Na3Zr2Si2PO12/Na interfacial performance by introducing a clean and Na-deficient surface[J].Chemistry of Materials,2020, 32(9):3970-3979. |
101 | SU Hang, ZHANG Shiwei, LIU Yimeng,et al.Na3Zr2Si2PO12 solid-state electrolyte with glass-like morphology for enhanced dendrite suppression[J].Rare Metals,2022,41(12):4086-4093. |
102 | GROSS M M, SMALL L J, PERETTI A S,et al.Tin-based ionic chaperone phases to improve low temperature molten sodium-NaSICON interfaces[J].Journal of Materials Chemistry A,2020,8(33):17012-17018. |
103 | WANG Xinxin, CHEN Jingjing, MAO Zhiyong,et al. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery[J].Journal of Materials Chemistry A,2021,9(29):16039-16045. |
104 | CAO Keshuang, ZHAO Xitong, CHEN Jian,et al.Hybrid design of bulk-Na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery[J].Advanced Energy Materials,2022,12(7):2102579. |
105 | FU Haoyu, YIN Qingyang, HUANG Ying,et al.Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery[J].ACS Materials Letters,2020,2(2):127-132. |
/
〈 |
|
〉 |