Development and utilization of lithium resources

Research status and prospect on direct regeneration of cathode materials from retired lithium-ion batteries

  • Di TANG ,
  • Junxiong WANG ,
  • Wen CHEN ,
  • Guanjun JI ,
  • Jun MA ,
  • Guangmin ZHOU
Expand
  • 1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
    2. Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-10-10

  Online published: 2023-01-17

Abstract

As countries around the world are vigorously developing the new energy vehicle industry,the number of power batteries,mainly of lithium-ion batteries(LIBs),has increased rapidly.However,LIBs have limited lifespan,and the early installed LIBs have met their retired requirements in recent years.There is an urgent need for effective recycling of the large number of decommissioned batteries,which would otherwise cause issues to the environment and human beings,as well as lead to the loss of precious metal resources.Traditional battery recycling technologies,mainly of pyrometallurgy or hydrometallurgy,can realize the fine recovery and reuse of various components of retired LIBs,but are usually polluting,energy intensive and long recovery cycle.Therefore,it is urgent to develop green,energy-saving and efficient LIBs recycling technology.In recent years,the emerging direct regeneration technology has attracted much attention due to its advantages of simple process,low carbon emission,low energy consumption and short recycling cycle.The several current mainstream direct regeneration technologies for cathode materials and their advantages and disadvantages were reviewed,their contributions in term of low cost and low energy consumption were analyzed and the functionalization of cathode materials and the latest development of LIBs closed-loop recycling was introduced.Finally,the prospects and development trends of the recycling of retired LIBs cathode materials and other components were forecasted,aiming to provide a reference for the field of battery recycling.

Cite this article

Di TANG , Junxiong WANG , Wen CHEN , Guanjun JI , Jun MA , Guangmin ZHOU . Research status and prospect on direct regeneration of cathode materials from retired lithium-ion batteries[J]. Inorganic Chemicals Industry, 2023 , 55(1) : 15 -25 . DOI: 10.19964/j.issn.1006-4990.2022-0597

References

1 LI M, LU Jun, CHEN Zhongwei, et al. 30 years of lithium-ion batteries[J].Advanced Materials, 2018, 30(33).Doi:10.1002/adma.201800561.
2 WANG Qingsong, MAO Binbin, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J].Progress in Energy and Combustion Science, 2019, 73:95-131.
3 PI?TEK J, AFYON S, BUDNYAK T M, et al. Sustainable Li-ion batteries:Chemistry and recycling[J].Advanced Energy Materials, 2021, 11(43).Doi:10.1002/aenm.202003456.
4 赵勇强, 钟财富. 碳达峰碳中和目标下的新能源产业发展与升级[J].中国能源, 2021, 43(9):44-49, 88.
4 ZHAO Yongqiang, ZHONG Caifu. The development and upgrading of new energy industry under the goal of carbon neutrality[J].Energy of China, 2021, 43(9):44-49, 88.
5 张静. 跟风投锂终有时[J].汽车观察, 2022(6):62-63.
6 况新亮, 刘垂祥, 熊朋. 锂离子电池产业分析及市场展望[J].无机盐工业, 2022, 54(8):12-19, 32.
6 KUANG Xinliang, LIU Chuixiang, XIONG Peng. Industry analysis and market prospect of lithium ion battery[J].Inorganic Chemicals Industry, 2022, 54(8):12-19, 32.
7 XIAO Jiefeng, LI Jia, XU Zhenming. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J].Environmental Science & Technology, 2020, 54(1):9-25.
8 QIAN Guannan, LI Zhiyuan, WANG Yong, et al. Value-creating upcycling of retired electric vehicle battery cathodes[J].Cell Reports Physical Science, 2022, 3(2).Doi:10.1016/j.xcrp.2022.100741.
9 高工产研锂电研究所. 2022年中国锂电池回收再利用市场前景分析报告[EB/OL].(2022-07-07)[2022-10-10].
10 中国电池研究院. 2021年中国理论废旧锂离子电池回收量逾59万吨 2026年千亿规模可期[EB/OL].(2022-03-28)[2022-10-10].
11 ROY P, SRIVASTAVA S K. Nanostructured anode materials for lithium ion batteries[J].Journal of Materials Chemistry A, 2015, 3(6):2454-2484.
12 YANG Zhijie, HUANG Haibo, LIN Feng. Sustainable electric vehicle batteries for a sustainable world:Perspectives on battery cathodes,environment,supply chain,manufacturing,life cycle,and policy[J].Advanced Energy Materials, 2022, 12(26).Doi:10.1002/aenm.202200383.
13 MA Xiaotu, HOU Jiahui, VANAPHUTI P, et al. Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials[J].Chem, 2022, 8(7):1944-1955.
14 MURDOCK B E, TOGHILL K E, TAPIA-RUIZ N. A perspective on the sustainability of cathode materials used in lithium-ion batteries[J].Advanced Energy Materials, 2021, 11(39).Doi:10.1002/aenm.202102028.
15 赵南南, 楚晓杏, 贾利军, 等. 动力电池正极材料磷酸铁锰锂制备及性能研究[J].汽车测试报告, 2022(11):115-117.
16 自然资源部中国地质调查局国际矿业研究中心. 全球矿业发展报告2019[R].北京:自然资源部中国地质调查局中国矿业报社, 2020.
17 LV Weiguang, WANG Zhonghang, CAO Hongbin, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J].ACS Sustainable Chemistry & Engineering, 2018, 6(2):1504-1521.
18 LAI Xin, HUANG Yunfeng, GU Huanghui, et al. Turning waste into wealth:A systematic review on echelon utilization and material recycling of retired lithium-ion batteries[J].Energy Storage Materials, 2021, 40:96-123.
19 ZHANG Xiaoxiao, LI Li, FAN Ersha, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J].Che- mical Society Reviews, 2018, 47(19):7239-7302.
20 WANG Junxiong, ZHANG Qi, SHENG Jinzhi, et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries[J].National Science Review, 2022, 9(8).Doi:10.1093/nsr/nwac097.
21 ROY J J, RAROTRA S, KRIKSTOLAITYTE V, et al. Green recycling methods to treat lithium-ion batteries E-waste:A circular approach to sustainability[J].Advanced Materials, 2022, 34(25).Doi:10.1002/adma.202103346.
22 YAO Yonglin, ZHU Meiying, ZHAO Zhuo, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries:A critical review[J].ACS Sustainable Chemistry & Engineering, 2018, 6(11):13611-13627.
23 MAYYAS A, STEWARD D, MANN M. The case for recycling:Overview and challenges in the material supply chain for automotive Li-ion batteries[J].Sustainable Materials and Technologies, 2019, 19.Doi:10.1016/j.susmat.2018.e00087.
24 WINTER M, BARNETT B, XU Kang. Before Li ion batteries[J].Chemical Reviews, 2018, 118(23):11433-11456.
25 VETTER J, NOVáK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J].Journal of Power Sources, 2005, 147(1/2):269-281.
26 ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J].Journal of the Electrochemical Society, 1998, 145(10):3647-3667.
27 FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond:Challenges and future prospects[J].Chemical Reviews, 2020, 120(14):7020-7063.
28 YANG Tairan, LU Yingqi, LI Liurui, et al. An effective relithiation process for recycling lithium-ion battery cathode materi-als[J].Advanced Sustainable Systems, 2020, 4(1).Doi:10.1002/adsu.201900088.
29 WU Jiawei, ZHENG Mengting, LIU Tiefeng, et al. Direct recovery:A sustainable recycling technology for spent lithium-ion battery[J].Energy Storage Materials, 2022.Doi:10.1016/j.ensm.2022.09.029.
30 FAN Min, CHANG Xin, MENG Qinghai, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J].SusMat, 2021, 1(2):241-254.
31 NIE Hehe, XU Long, SONG Dawei, et al. LiCoO2:Recycling from spent batteries and regeneration with solid state synthesis[J].Green Chemistry, 2015, 17(2):1276-1280.
32 LI Jian, HU Leshan, ZHOU Hongming, et al. Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries[J].Journal of Materials Science:Materials in Electronics, 2018, 29(20):17661-17669.
33 SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J].RSC Advances, 2017, 7(8):4783-4790.
34 RAHMAN M M, WANG Jiazhao, HASSAN M F, et al. Basic molten salt process:A new route for synthesis of nanocrystalline Li4Ti5O12-TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3-LiOH-Li2O2 [J].Journal of Power Sources, 2010, 195(13):4297-4303.
35 REDDY M V, RAO G V S, CHOWDARI B V R. Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3Mn1/3)O2 [J].Journal of Power Sources, 2006, 159(1):263-267.
36 BAI Ying, WANG Feng, WU Feng, et al. Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 [J].Electrochimica Acta, 2008, 54(2):322-327.
37 CHANG Zhaorong, CHEN Zhongjun, WU Feng, et al. The synthesis of Li(Ni1/3Co1/3Mn1/3)O2 using eutectic mixed lithium salt LiNO3-LiOH[J].Electrochimica Acta, 2009, 54(26):6529-6535.
38 CHEN Mengyuan, MA Xiaotu, CHEN Bin, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J].Joule, 2019, 3(11):2622-2646.
39 SHI Yang, ZHANG Minghao, MENG Y S, et al. Ambient-pressure relithiation of degraded Li x Ni0.5Co0.2Mn0.3O2(0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes[J].Advanced Energy Materials, 2019, 9(20).Doi:10.1002/aenm.201900454.
40 YANG Juan, WANG Wenyu, YANG Huimeng, et al. One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode[J].Green Chemistry, 2020, 22(19):6489-6496.
41 ?RNEK A, BULUT E, ?ZACAR M. The chemical,physical and electrochemical effects of carbon sources on the nano-scale LiFePO4 cathode surface[J].Ceramics International, 2014, 40(10):15727-15736.
42 LIU Xiang, WANG Mengmeng, DENG Longping, et al. Direct regeneration of spent lithium iron phosphate via a low-temperature molten salt process coupled with a reductive environment[J].Industrial & Engineering Chemistry Research, 2022, 61(11):3831-3839.
43 JING Qiankun, ZHANG Jialiang, LIU Yubo, et al. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method[J].ACS Sustainable Chemistry & Engineering, 2020, 8(48):17622-17628.
44 MAO Jianfeng, YE Chao, ZHANG Shilin, et al. Toward practical lithium-ion battery recycling:Adding value,tackling circularity and recycling-oriented design[J].Energy & Environmental Science, 2022, 15(7):2732-2752.
45 SHI Yang, CHEN Gen, LIU Fang, et al. Resolving the compositional and structural defects of degraded LiNi x Co y Mn z O2 particles to directly regenerate high-performance lithium-ion battery cathodes[J].ACS Energy Letters, 2018, 3(7):1683-1692.
46 LIU Yang, YU Hongjian, WANG Yue, et al. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery[J].Waste Management, 2022, 143:186-194.
47 XU Panpan, DAI Qiang, GAO Hongpeng, et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing[J].Joule, 2020, 4(12):2609-2626.
48 PADHI A K, NANJUNDASWAMY K S, MASQUELIER C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J].Journal of the Electrochemical Society, 1997, 144(5):1609-1613.
49 ISLAM M S, DRISCOLL D J, FISHER C A J, et al. Atomic-scale investigation of defects,dopants,and lithium transport in the LiFePO4 olivine-type battery material[J].Chemistry of Materials, 2005, 17(20):5085-5092.
50 PARK K Y, PARK I, KIM H, et al. Anti-site reordering in LiFePO4:Defect annihilation on charge carrier injection[J].Chemistry of Materials, 2014, 26(18):5345-5351.
51 CHEN Biaobing, LIU Min, CAO Shuang, et al. Direct regeneration and performance of spent LiFePO4 via a green efficient hydrothermal technique[J].Journal of Alloys and Compounds, 2022, 924.Doi:10.1016/j.jallcom.2022.166487.
52 Holbrey J D, Seddon K R. Ionic liquids[J].Clean Products and Processes, 1999, 1(4):223-236.
53 SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J].Chemical Reviews, 2014, 114(21):11060-11082.
54 HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents:A review of fundamentals and applications[J].Chemical Reviews, 2021, 121(3):1232-1285.
55 PAIVA A, CRAVEIRO R, AROSO I, et al. Natural deep eutectic solvents-solvents for the 21st century[J].ACS Sustainable Chemistry & Engineering, 2014, 2(5):1063-1071.
56 WANG Tao, LUO Huimin, BAI Yaocai, et al. Direct recycling of spent NCM cathodes through ionothermal lithiation[J].Advanced Energy Materials, 2020, 10(30).Doi:10.1002/aenm.202001204.
57 TRAN M K, RODRIGUES M T F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J].Nature Energy, 2019, 4(4):339-345.
58 ZHOU Qinwen, HUANG Zixuan, LIU Jianwen, et al. A closed-loop regeneration of LiNi0.6Co0.2Mn0.2O2 and graphite from spent batteries via efficient lithium supplementation and structural remodelling[J].Sustainable Energy & Fuels, 2021, 5(19):4981-4991.
59 FUNABIKI A, INABA M,ABE T,et al. Stage transformation of lithium-graphite intercalation compounds caused by electrochemical lithium intercalation[J].Journal of the Electrochemical Society, 1999, 146(7):2443-2448.
60 AN S J, LI Jianlin, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J].Carbon, 2016, 105:52-76.
61 WANG Junxiong, MA Jun, JIA Kai, et al. Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-ion batteries[J].ACS Energy Letters, 2022, 7(8):2816-2824.
62 JIA Kai, WANG Junxiong, MA Jun, et al. Suppressed lattice oxygen release via Ni/Mn doping from spent LiNi0.5Mn0.3Co0.2O2 toward high-energy layered-oxide cathodes[J].Nano Letters, 2022.Doi:10.1021/acs.nanolett.2c03090.
63 JIAO Miaolun, ZHANG Qi, YE Chenliang, et al. Recycling spent LiNi1- x- y Mn x Co y O2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries[J].Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(20).Doi:10.1073/pnas.2202202119.
Outlines

/