Catalytic Materials

Effect of copper-based catalyst structure on olefin aldehyde hydrogenation in trickle bed and fixed bubbling bed

  • Bingjie SONG ,
  • He CHEN ,
  • Peiyong SUN ,
  • Wenzheng CHAI ,
  • Shenghong ZHANG ,
  • Songbao FU ,
  • Zhilong YAO
Expand
  • 1. College of New Materials and Chemical Engineering,Beijing Institute of Petrochemical Technology,Beijing 102617,China
    2. Beijing Key Laboratory of Enze Biomass Fine Chemical
    3. Research Institute of Refining and Petrochemicals,CNOOC

Received date: 2022-06-01

  Online published: 2022-12-19

Abstract

Copper-silicon,copper-chromium and copper-zinc composite oxide catalysts with different compositions were prepared by coprecipitation method.The physicochemical properties and pore structure of the copper-based composite oxide catalysts were characterized by X-ray diffraction(XRD),temperature-programmed reduction by H2(H2-TPR),N2 adsorption-desorption(BET) and potentiometric titration with n-butylamine.The hydrogenation of 2-propyl-2-heptenal catalyzed by the three copper-based composite oxide catalysts with different compositions in trickle bed and fixed bubbling bed was investigated.The results showed that there was no positive correlation between the difference of copper crystal size and surface acid content on the three copper-based composite oxide catalysts and the catalytic performance of 2-propyl-2-heptenal hydrogenation.The fixed bubbling bed reactor was better than trickle bed reactor for olefin aldehyde hydrogenation catalyzed by catalysts with abundant macropore.

Cite this article

Bingjie SONG , He CHEN , Peiyong SUN , Wenzheng CHAI , Shenghong ZHANG , Songbao FU , Zhilong YAO . Effect of copper-based catalyst structure on olefin aldehyde hydrogenation in trickle bed and fixed bubbling bed[J]. Inorganic Chemicals Industry, 2022 , 54(12) : 148 -154 . DOI: 10.19964/j.issn.1006-4990.2022-0181

References

1 ZHAO Lili, AN Hualiang, ZHAO Xinqiang, et al. Effect of Ni/Co mass ratio and NiO-Co3O4 loading on catalytic performance of NiO-Co3O4/Nb2O5-TiO2 for direct synthesis of 2-propylheptanol from n-valeraldehyde[J]. RSC Advances, 2021, 11(3):1736-1742.
2 王雪峰, 夏伟, 许红云, 等. 2-丙基-2-庚烯醛加氢制2-丙基庚醇催化剂制备工艺研究[J]. 天然气化工:C1化学与化工 2021, 46(2):44-46, 70.
2 WANG Xuefeng, XIA Wei, XU Hongyun, et al. Study on preparation process of catalysts for hydrogenation of 2-propyl-2-heptaneal to 2-propyl heptanol[J]. Natural Gas Chemical Industry, 2021, 46(2):44-46, 70.
3 张卉, 陈和. C10烯醛液相加氢催化剂的性能评价[J]. 石化技术与应用, 2022, 40(1):17-19.
3 ZHANG Hui, CHEN He. Performance evaluation of C10 olefin aldehyde liquid phase hydrogenation catalyst[J]. Petrochemical Technology & Application, 2022, 40(1):17-19.
4 李选志, 曹晓玲. CuO-ZnO/Al2O3催化剂上异丁醛加氢制异丁醇的性能研究[C]//安阳:第十四届全国工业催化技术及应用年会.西安:中国化工学会全国工业催化信息站, 2017:97-103.
5 倪术荣, 吴显军, 徐伟池, 等. 气相醛加氢催化剂及其制备方法:中国,114054033A[P]. 2022-02-18.
6 赵修波. 改性铜铬加氢催化剂的开发[D].杭州:浙江大学, 2005.
6 ZHAO Xiubo. Development of copper chromite catalyst for furfural hydrogenation[D].Hangzhou:Zhejiang University, 2005.
7 孙中华, 殷玉圣, 殷惠琴. 一种用于癸烯醛液相加氢制异癸醇的催化剂及其制备方法:中国,106179373A[P]. 2016-12-07.
8 LI Zengxin, KUANG Tangbin, ZHOU Xuyi, et al. The ammonia leaching method of recycling the spent copper-chromium oxide catalysts[J]. Advanced Materials Research, 2014, 1015: 430-433.
9 王淇锋, 赵雨, 宋冰洁, 等. 制备方法对CuO-Cr2O3催化剂结构及其催化2-丙基-2-庚烯醛加氢性能的影响[J]. 化学反应工程与工艺, 2020, 36(5):421-427.
9 WANG Qifeng, ZHAO Yu, SONG Bingjie, et al. The effect of preparation methods on the structure of CuO-Cr2O3 catalysts and the catalytic performances in the hydrogenation of 2-propyl-2-heptenal[J]. Chemical Reaction Engineering and Technology, 2020, 36(5):421-427.
10 孙中华. 异癸醛气相加氢制异癸醇催化剂的研究[J]. 化学工业与工程技术, 2007, 28(4):8-11.
10 SUN Zhonghua. Research on the catalyst for preparing isodecyl alcohol by gas hydrogenation of isodecyl aldehyde[J]. Journal of Chemical Industry & Engineering, 2007, 28(4):8-11.
11 吴显军, 王刚, 张志华, 等. 气相醛加氢催化剂(VAH-1/VAH-2)[J]. 石油科技论坛, 2015, 34(S1):213-215.
11 WU Xianjun, WANG Gang, ZHANG Zhihua, et al. Aldehyde hydrogenation catalyst of vapor phase(VAH-1/VAH-2)[J]. Oil Forum, 2015, 34(S1):213-215.
12 荀彤, 张文成, 于宏伟. 新型辛烯醛加氢催化剂的研制[J]. 炼油与化工, 2002, 13(3):18-22.
12 XUN Tong, ZHANG Wencheng, YU Hongwei. Development of new type octenal hydrogenation catalyst[J]. Refining and Chemicals, 2002, 13(3):18-22.
13 王珂, 鄢冬茂, 龚党生, 等. 连续化加氢工艺和设备研究进展[J]. 染料与染色, 2019, 56(3):51-59.
13 WANG Ke, YAN Dongmao, GONG Dangsheng, et al. Progress in continuous hydrogenation process and equipment[J]. Dyestuffs and Coloration, 2019, 56(3):51-59.
14 WANG J X, SPENCER J E, CAI Yeping. Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols:US, 8399718[P]. 2013-03-19.
15 于海斌, 常俊石, 成宏, 等. 辛烯醛气相加氢制辛醇催化剂工业侧线试验[J]. 无机盐工业, 2005, 37(12):22-24.
15 YU Haibin, CHANG Junshi, CHENG Hong, et al. Industrial experiment of TCAH catalyst for the preparation of octanal from octene aldehyde by vapor phase hydrogenation[J]. Inorganic Che-Industry micals, 2005, 37(12):22-24.
16 张豫. 醋酸甲酯加氢制乙醇催化材料的研究[D].天津:天津大学, 2018.
16 ZHANG Yu. Study on catalytic materials of hydrogenation of methyl acetate to ethanol[D].Tianjin:Tianjin University, 2018.
17 尚城城, 郭湾, 姚志龙, 等. 异丁烯与醋酸酯化合成醋酸叔丁酯[J]. 精细化工, 2019, 36(8):1604-1609.
17 SHANG Chengcheng, GUO Wan, YAO Zhilong, et al. Esterification of acetic acid with isobutene to tert-butyl acetate[J]. Fine Che micals, 2019, 36(8):1604-1609.
Outlines

/