Development and utilization of salt lake resources

Study on optimization of synergistic lithium extraction process of tributyl phosphate-ethyl butyrate system by response surface method

  • Chenglong SHI ,
  • Shuqing MA ,
  • Yaru QIN ,
  • Bing LIU ,
  • Haichao LI
Expand
  • 1. School of Chemistry and Chemical Engineering,Qinghai Minzu University,Xining 810007,China
    2. Institute of Resource Chemistry of Qinghai
    3. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,Qinghai Institute of Salt Lakes,Chinese Academy of Sciences

Received date: 2022-01-19

  Online published: 2022-11-03

Abstract

The process of synergistic extraction of lithium from salt lake brine by tributyl phosphate-ethyl butyrate system was studied by response surface method with volume concentration of TBP,molar ratio of iron-lithium and phase ratio as independent variables and lithium extraction efficiency as response index.The optimal process conditions of the system obtained by response surface method were as follows:the volume concentration of TBP was 43%,the molar ratio of iron to lithium was 1.9 and phase ratio was 2.4.Under these conditions,the predicted value of lithium extraction efficiency was 92.39%,the actual measured valuewas 91.42%,and the relative error between predicted value and measured value was 1.05%.This study could provide a reference for the separation and extraction of lithium from salt lake brine.

Cite this article

Chenglong SHI , Shuqing MA , Yaru QIN , Bing LIU , Haichao LI . Study on optimization of synergistic lithium extraction process of tributyl phosphate-ethyl butyrate system by response surface method[J]. Inorganic Chemicals Industry, 2022 , 54(10) : 37 -41 . DOI: 10.19964/j.issn.1006-4990.2022-0034

References

[1] 邓小川, 朱朝梁, 史一飞, 等. 青海盐湖锂资源开发现状及对提锂产业发展建议[J].盐湖研究, 2018, 26(4): 11-18.
[1] DENG Xiaochuan, ZHU Chaoliang, SHI Yifei, et al.The current situation of Qinghai salt lake lithium resources development and the suggestions for lithium industry[J].Journal of Salt Lake Research, 2018, 26(4): 11-18.
[2] 吴静, 任秀莲, 魏琦峰.盐湖卤水中锂的分离提取研究进展[J].无机盐工业, 2020, 52(12): 1-6.
[2] WU Jing, REN Xiulian, WEI Qifeng.Research progress on separation and extraction of lithium from salt-lake brine[J].Inorganic Chemicals Industry, 2020, 52(12): 1-6.
[3] 葛涛, 徐亮, 孟金伟, 等. 盐湖卤水提锂工艺技术研究进展[J].有色金属工程, 2021, 11(2): 55-62.
[3] GE Tao, XU Liang, MENG Jinwei, et al.Research progress of lithi-um extraction technology from salt lake brine[J].Nonferrous Metals Engineering, 2021, 11(2): 55-62.
[4] 陈琳琳, 李小为, 蒋磊, 等. 钛系颗粒状吸附剂用于盐湖卤水中锂的吸附研究[J].当代化工研究, 2021(21): 4-7.
[4] CHEN Linlin, LI Xiaowei, JIANG Lei, et al.Study on adsorption of lithium from salt lake brine by titanium-based granulated adsorbent[J].Modern Chemical Research, 2021(21): 4-7.
[5] 陈旺, 蒋磊, 潘巧珍, 等. 钛系锂离子筛的制备及其吸附性能研究[J].无机盐工业, 2021, 53(10): 47-51.
[5] CHEN Wang, JIANG Lei, PAN Qiaozhen, et al.Research on preparation and adsorption performance of titanium lithium ion sieve[J].Inorganic Chemicals Industry, 2021, 53(10): 47-51.
[6] 唐娜, 龚经款, 项军.铝基锂吸附剂制备及其吸附性能研究[J].无机盐工业, 2020, 52(8): 51-56.
[6] TANG Na, GONG Jingkuan, XIANG Jun.Preparation and adsorption properties of aluminum-based lithium adsorbent[J].Inorganic Chemicals Industry, 2020, 52(8): 51-56.
[7] 卞维柏, 潘建明.选择性吸附提锂材料的研究进展[J].化工进展, 2020, 39(6): 2206-2217.
[7] BIAN Weibai, PAN Jianming.Research progress in selective adsorption materialsfor lithium extraction[J].Chemical Industry and Engineering Progress, 2020, 39(6): 2206-2217.
[8] 李志录, 王敏, 赵有璟, 等. 膜特征对锂资源提取过程的影响[J].化工进展, 2021, 40(9): 5061-5072.
[8] LI Zhilu, WANG Min, ZHAO Youjing, et al.Effects of membrane characteristics for lithium extraction[J].Chemical Industry and Engineering Progress, 2021, 40(9): 5061-5072.
[9] 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J].化工学报, 2017, 68(5): 1899-1905.
[9] MENG Qingwei, ZHANG Feng, CHEN Lu, et al.Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J].CIESC Journal, 2017, 68(5): 1899-1905.
[10] 贾航, 何利华, 徐文华, 等. 膜分离法及电化学吸附法盐湖提锂的研究进展[J].稀有金属与硬质合金, 2017, 45(1): 11-16.
[10] JIA Hang, HE Lihua, XU Wenhua, et al.Research progress of lithium recovery from salt lake brines with membrane separation method and electrochemical-adsorptive method[J].Rare Metals and Cemented Carbides, 2017, 45(1): 11-16.
[11] 蒋应平, 薛宇飞, 邓超群.采用TBP-NX混合萃取体系从盐湖卤水提锂[J].有色金属工程, 2021, 11(11): 41-47.
[11] JIANG Yingping, XUE Yufei, DENG Chaoqun.Solvent extraction of lithium from salt lake brine by TBP-NX mixed extraction system[J].Nonferrous Metals Engineering, 2021, 11(11): 41-47.
[12] 康锦, 卫丽娜, 成怀刚.离子液体用于盐湖卤水萃取提锂的研究进展[J].无机盐工业, 2022, 54(1): 1-6.
[12] KANG Jin, WEI Lina, CHENG Huaigang.Research progress on application of ionic liquids in extracting lithium from salt lakes[J].Inorganic Chemicals Industry, 2022, 54(1): 1-6.
[13] 张丽芬, 邢学永, 王文娟, 等. 高镁锂比盐湖卤水萃取提锂研究[J].矿冶工程, 2020, 40(5): 94-96.
[13] ZHANG Lifen, XING Xueyong, WANG Wenjuan, et al.Extraction of lithium from salt lake brine with high magnesium/lithium ratio[J].Mining and Metallurgical Engineering, 2020, 40(5): 94-96.
[14] 王艺博, 阮久莉, 郭玉文, 等. TBP为萃取剂分离废磷酸铁锂电池中金属锂的研究[J].现代化工, 2021, 41(7): 185-190.
[14] WANG Yibo, RUAN Jiuli, GUO Yuwen, et al.Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant[J].Modern Chemical Industry, 2021, 41(7): 185-190.
[15] 卫丽娜, 康锦, 李虎, 等. 盐湖提锂萃取剂及萃取体系研究进展[J].无机盐工业, 2021, 53(5): 21-25.
[15] WEI Lina, KANG Jin, LI Hu, et al.Research progress of lithium extractants and extraction systems from salt lakes[J].Inorganic Chemicals Industry, 2021, 53(5): 21-25.
[16] 谢铿, 王海北.混盐型高锂卤水萃取分离锂[J].有色金属工程, 2021, 11(11): 34-40.
[16] XIE Keng, WANG Haibei.Extraction and separation of lithium from a salt lake brine with high lithium content[J].Nonferrous Metals Engineering, 2021, 11(11): 34-40.
[17] ZHOU Zhiyong, FAN Jiahui, LIU Xueting, et al.Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent[J].Hydrometallurgy, 2020,191.Doi:10.1016/j.hydromet.2019.105244 .
[18] WANG Yong, LIU Haotian, FAN Jiahui, et al.Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid[J].ACS Sustainable Che- mistry & Engineering, 2019, 7(3): 3062-3072.
[19] CHEN Shangqing, Xuejiao NAN, ZHANG Nan, et al.Solvent extraction process and extraction mechanism for lithium recovery from high Mg/Li-ratio brine[J].Journal of Chemical Engineering of Japan, 2019, 52(6): 508-513.
[20] 欧阳杰, 谷晋川, 温鑫, 等. 响应面法优化D201树脂处理含铁废盐酸溶液的工艺研究[J].离子交换与吸附, 2018, 34(6): 549-558.
[20] OUYANG Jie, GU Jinchuan, WEN Xin, et al.Optimization of D201 resin for treatment of iron containing waste hydrochloric acid solution by response surface method[J].Ion Exchange and Adsorption, 2018, 34(6): 549-558.
[21] 方楠, 吴健, 何强, 等. 响应面法优化铁尾矿砂对铜(Ⅱ)的吸附条件[J].矿产综合利用, 2020(1): 140-145.
[21] FANG Nan, WU Jian, HE Qiang, et al.Optimization of adsorption conditions of copper(Ⅱ) on ferrous mill tailings by response surface methodology[J].Multipurpose Utilization of Mineral Resources, 2020(1): 140-145.
[22] 杨蓉, 朱丽峰, 张媛, 等. 基于响应面法的半水硫酸钙复合改性除砷研究[J].人工晶体学报, 2019, 48(12): 2316-2322.
[22] YANG Rong, ZHU Lifeng, ZHANG Yuan, et al.Removal of arsenic by complex modification of calcium sulfate hemihydrate based on response surface method[J].Journal of Synthetic Crystals, 2019, 48(12): 2316-2322.
[23] 李丽娟, 彭小五, 时东, 等. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系[J].盐湖研究, 2018, 26(4): 1-10.
[23] LI Lijuan, PENG Xiaowu, SHI Dong, et al.Eco-friendly separation and effective applications of lithium resources from various brine with lithium:Their extractant and extraction system[J].Journal of Salt Lake Research, 2018, 26(4): 1-10.
Outlines

/