Inorganic Chemicals Industry >
Study on process of CO2 dissolution and absorption in bipolar membrane electrodialysis system
Received date: 2021-05-31
Online published: 2022-04-18
Seawater carbon sequestration technology is considered as a green,environmental-friendly,safe and reliable technology among CO2 capture,utilization and storage(CCUS) technologies,which has good development prospects.The key of seawater carbon sequestration technology is the dissolution and absorption of CO2 in the bipolar membrane electrodialysis system.The influence of seeding in the crystallizer,the composition of the ventilation system,the simulated flue gas flow and the current density of the bipolar membrane electrodialysis device on the CO2 dissolution and absorption effect was investigated.It was found that the external crystal seeds and the simulated flue gas was beneficial to the dissolution and absorption of CO2 in the bipolar membrane electrodialysis system,promoting production of CaCO3.Based on the above,with the increase of simulated flue gas flow,the specific absorption rate of CO2 was decreased,and most of CO2 in the solution was converted into HCO3-,while the generation rate of CO32- and CaCO3 would be reduced.With the increase of current density in electrodialysis unit,the generation rate of HCO3-,CO32- and CaCO3 was increased accordingly.This study provided a guidance for the application of acid gas in dissolution,absorption and mineralization in bipolar membrane electrodialysis system.
Yixin Zhao , Mengfan Wu , Jianhang Wang , Yingying Zhao . Study on process of CO2 dissolution and absorption in bipolar membrane electrodialysis system[J]. Inorganic Chemicals Industry, 2022 , 54(4) : 104 -111 . DOI: 10.19964/j.issn.1006-4990.2021-0356
[1] | 孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业, 2021, 30(2):1-6. |
[2] | BENNACEUR K, GIELEN D, KERR T, et al. CO2 capture and storage:A key carbon abatement option[M]. Paris:International Energy Agency, 2008. |
[3] | KUMAR A, MADDEN D G, LUSI M, et al. Direct air capture of CO2 by physisorbent materials[J]. Angewandte Chemie, 2016, 127(480):14580-14585. |
[4] | EVGENIA M, SOLOMOM B, PAUL S, et al. CO2 capture and storage(CCS) cost reduction via infrastructure right-sizing[J]. Chemical Engineering Research and Design, 2017, 119:130-139. |
[5] | 陆诗建, 高丽娟, 王家凤, 等. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化工进展, 2020, 39(2):728-737. |
[6] | 华贲. 低碳时代石油化工产业资源与能源走势[J]. 化工学报, 2013, 64(1):76-83. |
[7] | 谢和平, 谢凌志, 王昱飞, 等. 全球二氧化碳减排不应是CCS,应是CCU[J]. 四川大学学报, 2012, 44:1-5. |
[8] | BOBICKI E R, LIU Q, XU Z, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy & Combustion Science, 2012, 38(2):302-320. |
[9] | ARIAS B, ALONSO M, ABANADES C. CO2 capture by calcium looping at relevant conditions for cement plants:Experimental testing in a 30 kWh Pilot Plan[J]. Industrial & Engineering Chemistry Research, 2017, 56(10):2634-2640. |
[10] | 向乐凯, 李枫, 赵宁, 等. 二氧化碳鼓泡碳化法制备碳酸钙的研究[J]. 无机盐工业, 2016, 48(8):46-51. |
[11] | 国际能源署最新版CCS技术路线图即将出炉[J]. 低碳世界, 2013(6):10. |
[12] | WANG W, HU M, ZHENG Y, et al. CO2 fixation in Ca2+-/Mg2+-rich aqueous solutions through enhanced carbonate precipitation[J]. Ind.Eng.Chem.Res., 2011, 50(13):8333-8339. |
[13] | 张密林, 马立世, 景晓燕, 等. 海水─有机胺体系吸收CO2的研究[J]. 应用科技, 2000(3):21-22. |
[14] | CHERNOVA N I, KISELEVA S V. The wastewater using in technologies of bio-oil production from microalgae:CO2 capture and storage[J]. IOP Conference Series Materials Science and Engineering, 2021, 1037(1).Doi: 10.1088/1757-899X/1037/1/012045. |
[15] | ZHAO Y, CAO H, XIE Y, et al. Mechanism studies of a CO2 participant softening pretreatment process for seawater desalination[J]. Desalination, 2016, 393:166-173. |
[16] | ZHAO Y, ZHANG Y, LIU J, et al. Trash to treasure:Seawater pretreatment by CO2 mineral carbonation using brine pretreatment waste of soda ash plant as alkali source[J]. Desalination, 2017, 407:85-92. |
[17] | XU T, HUANG C. Electrodialysis-based separation technologies:A critical review[J]. AIChE, 2008, 54:3147-3159. |
[18] | SHEN J, YU J, HUANG J, et al. Preparation of highly pure tetrapropyl ammonium hydroxide using continuous bipolar membrane electrodialysis[J]. Chem.Eng., 2013, 220:311-319. |
[19] | IBANEZ R, PEREZ-GONZALEZ A, GOMEZ P, et al. Acid and base recovery from softened reverse osmosis(RO) brines.Experimental assessment using model concentrates[J]. Desalination, 2013, 309:165-170. |
[20] | YANG Y, GAO X, FAN A, et al. An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis[J]. Membr.Sci., 2014, 449:119-126. |
[21] | NAGASAWA H, YAMASAKI A, IIZUKA A, et al. A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis[J]. AIChE, 2009, 55:3286-3293. |
[22] | ZHAO Y, WANG J, JI Z, et al. A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer[J]. Chem.Eng., 2020, 381.Doi: 10.1016/j.cej.2019.122542. |
[23] | ZHAO Y, WANG L, JI Z, et al. Collaborative disposal of problematic calcium ions in seawater and carbon and sulfur pollutants in flue gas by bipolar membrane electrodialysis[J]. Desalination, 2020, 494.Doi: 10.1016/j.desal.2020.114654. |
/
〈 |
|
〉 |