Inorganic Chemicals Industry >
Effect of alternating external magnetic field on the dissolution behavior of calcium sulfate scale and its mechanism
Received date: 2021-10-15
Online published: 2022-03-18
In order to clarify the influence of the alternating external magnetic field on the dissolution behavior of calcium sulfate scale,ion concentration,conductivity and infrared spectroscopy were used to detect the properties of calcium sulfate scale solution,X-ray diffraction(XRD) and detecting the dissolved amount of calcium sulfate scale and other methods were used to characterize and analyze calcium sulfate scale.The results showed that the alternating external magnetic field could obviously promote the dissolution of calcium sulfate scale.Compared with the calcium sulfate scale solution without magnetic field effect,when the alternating external magnetic field was acted for 60 min,the sulfate radical mass concentration of calci-um sulfate scale dissolving solution increased from 2.41 g/L to 3.52 g/L,the conductivity increased from 5.85 mS/cm to 7.24 mS/cm,and the dissolved amount of calcium sulfate scale increased by 40%.The reason of the external alternating magnetic field promoting the dissolution was that the external alternating magnetic field could increase the percentage of hydrophilic hydroxyl groups in distilled water,and promote the molecular affinity of water molecules and calcium sulfate scale.In addition,the effect of the alternating external magnetic field also caused the crystallinity of calcium sulfate scale to decrease,and the interplanar spacing of the main crystal planes to increase,which was ultimately conducive to the contact and dissolution of scale and water.The research could provide theoretical basis for the use of alternating external magnetic fields to control the dissolution behavior of calcium sulfate scale.
Xinyu MAO , Yubin WANG , Wenwen WANG , Shuqin LI , Xiaoxiao MA . Effect of alternating external magnetic field on the dissolution behavior of calcium sulfate scale and its mechanism[J]. Inorganic Chemicals Industry, 2022 , 54(3) : 97 -101 . DOI: 10.19964/j.issn.1006-4990.2021-0558
[1] | 黄磊, 冯永刚. 浮选厂循环水管道防垢及除垢的方法[J]. 磷肥与复肥, 2019, 34(2):36-37. |
[2] | 曹彩虹, 于增盛, 曹战国. 硫酸钙结疤清洗方法研究[J]. 无机盐工业, 2018, 50(9):57-59. |
[3] | 韩良敏, 冯毅. 磁场抑垢的影响因素与机理研究[J]. 给水排水, 2010, 46(S1):378-380. |
[4] | 杨星, 刘智安, 龙山, 等. 电磁场协同处理电厂循环冷却水阻垢实验[J]. 工业水处理, 2016, 36(5):44-46. |
[5] | 刘向朝, 宫继勇, 聂明, 等. 阻硫酸钙垢缓蚀阻垢剂在发电循环水中的研究及应用[J]. 当代化工研究, 2021(3):145-146. |
[6] | 刘延财, 王奋中, 曹国玉, 等. 循环水电化学除垢技术在化工企业的研究与应用[J]. 中国氯碱, 2021(4):20-23. |
[7] | BOGART S J, AZIZISHIRAZI A, PYLE G G. Challenges and future prospects for developing Ca and Mg water quality guidelines:A meta-analysis[J]. Philosophical Transactions Biological Sciences, 2018, 374(1764).Doi: 10.1098/rstb.2018.0364. |
[8] | 李宇韬, 邓先强, 刘超, 等. 金属管道结垢清垢和非金属管道物理清垢综述[J]. 现代商贸工业, 2019, 40(19):190. |
[9] | 何俊, 赵宗泽, 李跃华, 等. 物理方法除垢阻垢技术的研究现状及进展[J]. 工业水处理, 2010, 30(9):5-9. |
[10] | 戴冬生, 杨禹, 肖波, 等. 交变磁场电磁防垢除垢装置在供冷系统中的应用研究[J]. 广东化工, 2021, 48(22):184-185. |
[11] | CHO Y I, LANE J, KIM W. Pulsed-power treatment for physical water treatment[J]. International Communications in Heat and Mass Transfer, 2005, 32(7):861-871. |
[12] | 马彩凤, 李树刚. 磁场对油田污水硫酸钙结垢的影响研究[J]. 化学工程与装备, 2012(1):152-155. |
[13] | 邓爱华, 黄慧民, 姬文晋. 磁场对碳酸钙成核结晶过程的影响[J]. 工业水处理, 2012, 32(10):27-30. |
[14] | DONALDSON J D, GRIMES S. Lifting the scales from our pipes[J]. New Scientist, 1988, 117(18):43-46. |
[15] | 王宇斌, 王望泊, 朱新锋, 等. 磁化条件下不同镁盐对碳酸钙溶解行为的影响[J]. 无机盐工业, 2020, 52(3):35-38. |
[16] | WANG Y, MAO X, XIAO W, et al. The influence mechanism of ma-gnesium ions on themorphology and crystal structure of magnetized anti-scaling products[J]. Minerals, 2020, 10(11).Doi: 10.3390/min10110997. |
[17] | ATKINS P W. Physical chemistry[M]. Oxford: Oxford University Press, 1978:773-774. |
[18] | 柳光磊, 阮毅. 水的磁化处理技术的研究进展[J]. 兴义民族师范学院学报, 2019(4):117-120. |
[19] | 谢浪, 罗双, 付汝宾, 等. 纤维-建筑石膏基复合材料力学及耐水性能研究进展[J]. 新型建筑材料, 2021, 48(6):34-39. |
[20] | 徐亚慧, 郭倩倩, 邵建斌, 等. 硫酸钙工业结垢体的处理研究[J]. 价值工程, 2020, 39(13):242-243. |
/
〈 |
|
〉 |