Inorganic Chemicals Industry >
Study on controllable synthesis and ultramicroscopic structure-activity relationship of cerium oxides nanocatalysts
Received date: 2021-11-10
Online published: 2022-03-18
The transformation process of valence state of Cerium(Ce) is often accompanied by the storage and release of oxy-gen and the formation and migration of oxygen vacancies(Ov),thus the CeO2-based materials are widely used in automotive exhaust gas treatment,solid fuel cells,catalysis and other fields.The reversible valence transition of Ce ions(Ce4+⇌Ce3+) is the key to the excellent performance of CeO2-based materials.Under the background of accelerating the realization of the“dual carbon”goal in today′s society in China,CeO2 is bound to have broader prospects in the fields of energy and catalysis.Based on the concept of surface and interface catalysis,nanotechnology and spherical aberration correction transmission electron microscopy,many researchers have designed and synthesized the CeO2 nanocatalysts with rational structure and excellent performance,and conducted the in-depth investigation of its atomic structure,ion valence state,chemical composition and other physicochemical properties in-depth from an ultramicroscopic perspective.Therefore,the latest research progress in the controllable synthesis,facet modification and growth,self-assembly,and functional doping of CeO2 nanocatalysts was reviewd,and the relationship between atomic structure,chemical composition and physicochemical properties was discussed deeply,which was aiming at construction of the ultramicroscopic structure-activity relationship of functional nanocatalysts at the atomic scale and providing the reliable experimental data and powerful theoretical guidance for the design and synthesis of multi-component,multi-dimensional,high-performance CeO2 nanocatalyst.
Xiaodong HAO , Xinyi FENG , Yang XU , Xishu ZHANG , Wen LIU , Fangyuan HAO , Shufang MA , Bingshe XU . Study on controllable synthesis and ultramicroscopic structure-activity relationship of cerium oxides nanocatalysts[J]. Inorganic Chemicals Industry, 2022 , 54(3) : 7 -17 . DOI: 10.19964/j.issn.1006-4990.2021-0628
[1] | TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews, 1996, 38(4):439-520. |
[2] | MURRAY E P, TSAI T, BARNETT S. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745):649-651. |
[3] | XU C, QU X. Cerium oxide nanoparticle:A remarkably versatile rare earth nanomaterial for biological applications[J]. NPG Asia Materi-als, 2014, 6(3):102-108. |
[4] | ZHANG Y, ZHAO S, FENG J, et al. Unraveling the physical chemi-stry and materials science of CeO2-based nanostructures[J]. Chem, 2021, 7(8):2022-2059. |
[5] | TAN Z, WU T S, SOO Y L, et al. Unravelling the true active site for CeO2-catalyzed dephosphorylation[J]. Applied Catalysis B:Environ-mental, 2020, 264.Doi: 10.1016/j.apcatb.2019.118508. |
[6] | 宋晓岚, 杨振华, 邱冠周, 等. 纳米氧化铈在高新技术领域中的应用及其制备研究进展[J]. 材料导报, 2003, 17(12):36-39. |
[7] | FENG X, LI W, LIU D, et al. Self-assembled Pd@CeO2/γ-Al2O3 ca-talysts with enhanced activity for catalytic methane combustion[J]. Small, 2017, 13(31).Doi: 10.1002/smll.201700941. |
[8] | LI L, ZHANG N, WU R, et al. Comparative study of moisture-treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 catalysts for automobile exhaust emission reactions:Effect of core-shell interface[J]. ACS Applied Materials & Interfaces, 2020, 12(9):10350-10358. |
[9] | MACHIDA M, FUJIWARA A, YOSHIDA H, et al. Deactivation me-chanism of Pd/CeO2-ZrO2 three-way catalysts analyzed by chassis-dynamometer tests and in situ diffuse reflectance spectroscopy[J]. ACS Catalysis, 2019, 9(7):6415-6424. |
[10] | FUJIWARA A, YOSHIDA H, OHYAMA J, et al. In-situ diffuse reflectance spectroscopy analysis of Pd/CeO2-ZrO2 model three-way catalysts under Lean-Rich cycling condition[J]. Catalysis Today, 2021, 376:269-275. |
[11] | CHEN Y, FAN J, DENG J, et al. Synjournal of high stability nano-sized Rh/CeO2-ZrO2 three-way automotive catalysts by Rh chemi-cal state regulation[J]. Journal of the Energy Institute, 2020, 93(6):2325-2333. |
[12] | FAN J, CHEN Y, JIANG X, et al. A simple and effective method to synthesize Pt/CeO2 three-way catalysts with high activity and hy-drothermal stability[J]. Journal of Environmental Chemical En-gineering, 2020, 8(5).Doi: 10.1016/j.jece.2020.104236. |
[13] | WANG Y G, MEI D, GLEZAKOU V A, et al. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanopar-ticles[J]. Nature Communications, 2015, 6.Doi: 10.1038/ncomms7511. |
[14] | TAN Z, ZHANG J, CHEN Y C, et al. Unravelling the role of struc-tural geometry and chemical state of well-defined oxygen vacanci-es on pristine CeO2 for H2O2 activation[J]. The Journal of Physical Chemistry Letters, 2020, 11(14):5390-5396. |
[15] | JIANG D, WAN G, GARCÍA-VARGAS C E, et al. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-tempera-ture CO oxidation[J]. ACS Catalysis, 2020, 10(19):11356-11364. |
[16] | TROVARELLI A, LLORCA J. Ceria catalysts at nanoscale:How do crystal shapes shape catalysis?[J]. ACS Catalysis, 2017, 7(7):4716-4735. |
[17] | ZHANG J, KUMAGAI H, YAMAMURA K, et al. Extra-low-tempe-rature oxygen storage capacity of CeO2 nanocrystals with cubic fa-cets[J]. Nano Letters, 2011, 11(2):361-364. |
[18] | CARGNELLO M, DOAN-NGUYEN V V T, GORDON T R, et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts[J]. Science, 2013, 341(6147):771-773. |
[19] | DAO D V, NGUYEN T T D, UTHIRAKUMAR P, et al. Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core-shell photocatalysts for light-driven hydrogen evo-lution improvement[J]. Applied Catalysis B:Environmental, 2021, 286.Doi: 10.1016/j.apcatb.2021.119947. |
[20] | LU Y, ZHOU S, KUO C T, et al. Unraveling the intermediate reac-tion complexes and critical role of support-derived oxygen atoms in CO oxidation on single-atom Pt/CeO2[J]. ACS Catalysis, 2021, 11(14):8701-8715. |
[21] | MURAVEV V, SPEZZATI G, SU Y Q, et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation[J]. Nature Ca-talysis, 2021, 4(6):469-478. |
[22] | ZHANG L, SPEZZATI G, MURAVEV V, et al. Improved Pd/CeO2 catalysts for low-temperature NO reduction:Activation of CeO2 la-ttice oxygen by Fe doping[J]. ACS Catalysis, 2021, 11(9):5614-5627. |
[23] | TAN Z, LI G, CHOU H L, et al. Differentiating surface Ce species among CeO2 facets by solid-state NMR for catalytic correlation[J]. ACS Catalysis, 2020, 10(7):4003-4011. |
[24] | JIANG F, WANG S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 cata-lysts[J]. ACS Catalysis, 2020, 10(19):11493-11509. |
[25] | WEI Y, ZHANG Y, ZHANG P, et al. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts[J]. Environmental Science & Technology, 2020, 54(3):2002-2011. |
[26] | LI C, SUN Y, DJERDJ I, et al. Shape-controlled CeO2 nanoparticl-es:Stability and activity in the catalyzed HCl oxidation reaction[J]. ACS Catalysis, 2017, 7(10):6453-6463. |
[27] | CORDEIRO M A L, WENG W, STROPPA D G, et al. High resolu-tion electron microscopy study of nanocubes and polyhedral nano-crystals of cerium(Ⅳ) oxide[J]. Chemistry of Materials, 2013, 25(10):2028-2034. |
[28] | DANG F, KATO K, IMAI H, et al. Characteristics of CeO2 nanocu-bes and related polyhedra prepared by using a liquid-liquid inter-face[J]. Crystal Growth & Design, 2010, 10(10):4537-4541. |
[29] | ZHANG J, OHARA S, UMETSU M, et al. Colloidal ceria nanocry-stals:A tailor-made crystal morphology in supercritical water[J]. Advanced Materials, 2007, 19(2):203-206. |
[30] | HAO X, ZHANG S, XU Y, et al. Surfactant-mediated morphology evolution and self-assembly of cerium oxide nanocrystals for cata-lytic and supercapacitor applications[J]. Nanoscale, 2021, 13(23):10393-10401. |
[31] | BOLES M A, ENGEL M, TALAPIN D V. Self-assembly of colloidal nanocrystals:From intricate structures to functional materials[J]. Chemical Reviews, 2016, 116(18):11220-11289. |
[32] | 孟令镕, 彭卿, 周和平, 等. 从纳米晶到三维超晶格结构[J]. 高等学校化学学报, 2011, 32(3):429-436. |
[33] | YE X, CHEN J, ERIC IRRGANG M, et al. Quasicrystalline nano-crystal superlattice with partial matching rules[J]. Nature Materi-als, 2016, 16:214-219. |
[34] | SI K J, CHEN Y, SHI Q, et al. Nanoparticle superlattices:The roles of soft ligands[J]. Advanced Science, 2018, 5(1).Doi: 10.1002/advs.201700179. |
[35] | NAGAOKA Y, ZHU H, EGGERT D, et al. Single-component qua-sicrystalline nanocrystal superlattices through flexible polygon tiling rule[J]. Science, 2018, 362(6421):1396-1400. |
[36] | BRENNAN M C, TOSO S, PAVLOVETC I M, et al. Superlattices are greener on the other side:How light transforms self-assembled mixed halide perovskite nanocrystals[J]. ACS Energy Letters, 2020, 5(5):1465-1473. |
[37] | WU L, WILLIS J J, MCKAY I S, et al. High-temperature crystalliza-tion of nanocrystals into three-dimensional superlattices[J]. Nature, 2017, 548(7666):197-201. |
[38] | WU L, MENDOZA-GARCIA A, LI Q, et al. Organic phase synthe-ses of magnetic nanoparticles and their applications[J]. Chemical Reviews, 2016, 116(18):10473-10512. |
[39] | YANG Y, WANG B, SHEN X, et al. Scalable assembly of crystalli-ne binary nanocrystal superparticles and their enhanced magnetic and electrochemical properties[J]. Journal of the American Chemical Society, 2018, 140(44):15038-15047. |
[40] | 周学华, 李津如, 刘春艳, 等. 不同链长表面活性剂修饰的金纳米颗粒的制备、稳定性及二维排列[J]. 中国科学:B辑, 2002, 32(3):243-247. |
[41] | WEIDMAN M C, NGUYEN Q, SMILGIES D M, et al. Impact of size dispersity,ligand coverage,and ligand length on the structure of PbS nanocrystal superlattices[J]. Chemistry of Materials, 2018, 30(3):807-816. |
[42] | WINSLOW S W, SWAN J W, TISDALE W A. The importance of unbound ligand in nanocrystal superlattice formation[J]. Journal of the American Chemical Society, 2020, 142(21):9675-9685. |
[43] | OWEN J. The coordination chemistry of nanocrystal surfaces[J]. Science, 2015, 347(6222):615-616. |
[44] | BOLES M A, LING D, HYEON T, et al. The surface science of na-nocrystals[J]. Nature Materials, 2016, 15(2):141-153. |
[45] | YIN Y, ALIVISATOS A P. Colloidal nanocrystal synjournal and the organic-inorganic interface[J]. Nature, 2005, 437(7059):664-670. |
[46] | LOVE J C, ESTROFF L A, KRIEBEL J K, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J]. Chemical Reviews, 2005, 105(4):1103-1170. |
[47] | BOLES M A, TALAPIN D V. Connecting the dots[J]. Science, 2014, 344(6190):1340-1341. |
[48] | ANDERSON N C, HENDRICKS M P, CHOI J J, et al. Ligand ex-change and the stoichiometry of metal chalcogenide nanocrystals:Spectroscopic observation of facile metal-carboxylate displacement and binding[J]. Journal of the American Chemical Society, 2013, 135(49):18536-18548. |
[49] | HUTH F, GOVYADINOV A, AMARIE S, et al. Nano-FTIR abso-rption spectroscopy of molecular fingerprints at 20 nm spatial res-olution[J]. Nano Letters, 2012, 12(8):3973-3978. |
[50] | SIMON P, BAHRIG L, BABURIN I A, et al. Interconnection of na-noparticles within 2D superlattices of PbS/oleic acid thin films[J]. Advanced Materials, 2014, 26(19):3042-3049. |
[51] | FINDLAY S D, SHIBATA N, SAWADA H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy[J]. Applied Physics Letters, 2009, 95(19). Doi: 10.1063/1.3265946. |
[52] | HARUTA M, YOSHIDA K, KURATA H, et al. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine[J]. Ultramicroscopy, 2008, 108(6):545-551. |
[53] | HAO X, CHEN C, SAITO M, et al. Direct imaging for single molec-ular chain of surfactant on CeO2 nanocrystals[J]. Small, 2018, 14(31).Doi: 10.1002/smll.201801093. |
[54] | COROPCEANU I, BOLES M A, TALAPIN D V. Systematic mapp-ing of binary nanocrystal superlattices:The role of topology in phase selection[J]. Journal of the American Chemical Society, 2019, 141(14):5728-5740. |
[55] | YU C, GUO X, MUZZIO M, et al. Self-assembly of nanoparticles into two-dimensional arrays for catalytic applications[J]. Chemphy-schem, 2019, 20(1):23-30. |
[56] | FINDLAY S D, SHIBATA N, SAWADA H, et al. Dynamics of an-nular bright field imaging in scanning transmission electron microscopy[J]. Ultramicroscopy, 2010, 110(7):903-923. |
[57] | BONESCHANSCHER M P, EVERS W H, GEUCHIES J J, et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices[J]. Science, 2014, 344(6190):1377-1380. |
[58] | LITWINOWICZ A A, TAKAMI S, ASAHINA S, et al. Formation dynamics of mesocrystals composed of organically modified CeO2 nanoparticles:Analogy to a particle formation model[J]. CrystEng Comm, 2019, 21(25):3836-3843. |
[59] | CAMPBELL C T, PEDEN C H. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735):713-714. |
[60] | SETVIN M, ASCHAUER U, SCHEIBER P, et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase(101)[J]. Sci-ence, 2013, 341(6149):988-991. |
[61] | GRACIANI J, MUDIYANSELAGE K, XU F, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synjournal from CO2[J]. Science, 2014, 345(6196):546-550. |
[62] | WANG H, LUO S, ZHANG M, et al. Roles of oxygen vacancy and Ox- in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts[J]. Journal of Catalysis, 2018, 368:365-378. |
[63] | SINGH P, HEGDE M, GOPALAKRISHNAN J. Ce2/3Cr1/3O2+y:A new oxygen storage material based on the fluorite structure[J]. Chemi-stry of Materials, 2008, 20(23):7268-7273. |
[64] | LIU X, ZHOU K, WANG L, et al. Oxygen vacancy clusters promot-ing reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131(9):3140-3141. |
[65] | JIANG D, WANG W, ZHANG L, et al. Insights into the surface-de-fect dependence of photoreactivity over CeO2 nanocrystals with well-fefined crystal facets[J]. ACS Catalysis, 2015, 5(8):4851-4858. |
[66] | LI Y, WEI Z, GAO F, et al. Effect of oxygen defects on the catalytic performance of VOx /CeO2 catalysts for oxidative dehydrogenation of methanol[J]. ACS Catalysis, 2015, 5(5):3006-3012. |
[67] | DEJHOSSEINI M, AIDA T, WATANABE M, et al. Catalytic crack-ing reaction of heavy oil in the presence of cerium oxide nanoparti-cles in supercritical water[J]. Energy & Fuels, 2013, 27(8):4624-4631. |
[68] | SEONG G, YOKO A, INOUE R, et al. Selective chemical recovery from biomass under hydrothermal conditions using metal oxide na-nocatalyst[J]. The Journal of Supercritical Fluids, 2018, 133(2):726-737. |
[69] | WU Z, LI M, HOWE J, et al. Probing defect sites on CeO2 nanocrys-tals with well-defined surface planes by Raman spectroscopy and O2 adsorption[J]. Langmuir, 2010, 26(21):16595-16606. |
[70] | WU L, WIESMANN H, MOODENBAUGH A R, et al. Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size[J]. Physical Review B, 2004, 69(12).Doi: 10.1103/PhysRevB.69.125415. |
[71] | TURNER S, LAZAR S, FREITAG B, et al. High resolution mapping of surface reduction in ceria nanoparticles[J]. Nanoscale, 2011, 3(8):3385-3390. |
[72] | PRIEUR D, BONANI W, POPA K, et al. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles[J]. Inor-ganic Chemistry, 2020, 59(8):5760-5767. |
[73] | TSUNEKAWA S, ISHIKAWA K, LI Z Q, et al. Origin of anomalous lattice expansion in oxide nanoparticles[J]. Physical Review Let-ters, 2000, 85(16).Doi: 10.1103/PhysRevLett.85.3440. |
[74] | ZHANG F, CHAN S W, SPANIER J E, et al. Cerium oxide nano-particles:Size-selective formation and structure analysis[J]. App-lied Physics Letters, 2002, 80(1):127-129. |
[75] | ZHOU X D, HUEBNER W. Size-induced lattice relaxation in CeO2 nanoparticles[J]. Applied Physics Letters, 2001, 79(21):3512-3514. |
[76] | DESHPANDE S, PATIL S, KUCHIBHATLA S V N T, et al. Size dependency variation in lattice parameter and valency states in na-nocrystalline cerium oxide[J]. Applied Physics Letters, 2005, 87(13).Doi: 10.1063/1.2061873. |
[77] | PEREBEINOS V, CHAN S W, ZHANG F. ‘Madelung model’pre-diction for dependence of lattice parameter on nanocrystal size[J]. Solid State Communications, 2002, 123(6):295-297. |
[78] | DIEHM P M, AGOSTON P, ALBE K. Size-dependent lattice expan-sion in nanoparticles:Reality or anomaly?[J]. ChemPhysChem, 2012, 13(10):2443-2454. |
[79] | HAO X, YOKO A, CHEN C, et al. Atomic-scale valence state distri-bution inside ultrafine CeO2 nanocubes and its size dependence[J]. Small, 2018, 14(42).Doi: 10.1002/smll.201802915. |
[80] | KOBAYASHI S, INOUE K, KATO T, et al. Multiphase nanodomai-ns in a strained BaTiO3 film on a GdScO3 substrate[J]. Journal of Applied Physics, 2018, 123(6).Doi: 10.1063/1.5012545. |
[81] | ESCH F, FABRIS S, ZHOU L, et al. Electron localization deter-mines defect formation on ceria substrates[J]. Science, 2005, 309(5735):752-755. |
[82] | JERRATSCH J F, SHAO X, NILIUS N, et al. Electron localization in defective ceria films:A study with scanning-tunneling micros-copy and density-functional theory[J]. Physical Review Letters, 2011, 106(24).Doi: 10.1103/PhysRevLett.106.246801. |
[83] | LIN Y, WU Z, WEN J, et al. Imaging the atomic surface structures of CeO2 nanoparticles[J]. Nano Letters, 2014, 14(1):191-196. |
[84] | GILLISS S R, BENTLEY J, CARTER C B. Electron energy-loss spectroscopic study of the surface of ceria abrasives[J]. Applied Surface Science, 2005, 241(1/2):61-67. |
[85] | ZHANG F, WANG P, KOBERSTEIN J, et al. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectro-scopy and absorption near edge spectroscopy[J]. Surface Science, 2004, 563(1/2/3):74-82. |
[86] | GORIS B, TURNER S, BALS S, et al. Three-dimensional valency mapping in ceria nanocrystals[J]. ACS Nano, 2014, 8(10):10878-10884. |
[87] | SUGIURA M. Oxygen storage materials for automotive catalysts: Ceria-zirconia solid solutions[J]. Catalysis Surveys from Asia, 2003, 7(1):77-87. |
[88] | DI MONTE R, KAŠPAR J. On the role of oxygen storage in three-way catalysis[J]. Topics in Catalysis, 2004, 28(1/2/3/4):47-57. |
[89] | SONG S H, MOON J, KIM J H, et al. Panoscopic alloying of cobalt in CeO2-ZrO2 solid solutions for superior oxygen-storage capaci-ty[J]. Acta Materialia, 2016, 113:206-212. |
[90] | OZAWA M, MISAKI M, IWAKAWA M, et al. Low content Pt-doped CeO2 and core-shell type CeO2/ZrO2 model catalysts;microstruc-ture,TPR and three way catalytic activities[J]. Catalysis Today, 2019, 332:251-258. |
[91] | YU J, WANG J, LONG X, et al. Formation of FeOOH nanosheets induces substitutional doping of CeO2-x with high-valence Ni for efficient water oxidation[J]. Advanced Energy Materials, 2021, 11(4).Doi: 10.1002/aenm.202002731. |
[92] | LIU B, LI C, ZHANG G, et al. Oxygen vacancy promoting dimethyl carbonate synjournal from CO2 and methanol over Zr-doped CeO2 nanorods[J]. ACS Catalysis, 2018, 8(11):10446-10456. |
[93] | KIM H J, SHIN D, JEONG H, et al. Design of an ultrastable and hi-ghly active ceria catalyst for CO oxidation by rare-earth-and tran-sition-metal Co-doping[J]. ACS Catalysis, 2020, 10(24):14877-14886. |
[94] | YANG L, PASTOR-PÉREZ L, GU S, et al. Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift:Effect of selected transition metal promoters[J]. Applied Catalysis B:En-vironmental, 2018, 232:464-471. |
[95] | SINGH P, HEGDE M. Ce0.67Cr0.33O2.11:A new low-temperature O2 ev-olution material and H2 generation catalyst by thermochemical splitting of water[J]. Chemistry of Materials, 2009, 22(3):762-768. |
[96] | ZHU Y, SEONG G, NOGUCHI T, et al. Highly Cr-substituted CeO2 nanoparticles synthesized using a non-equilibrium supercritical hydrothermal process:High oxygen storage capacity materials designed for a low-temperature bitumen upgrading process[J]. ACS Applied Energy Materials, 2020, 3(5):4305-4319. |
[97] | XIE H, WANG H, GENG Q, et al. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electro-catalytic N2 fixation to NH3 under ambient conditions[J]. Inorganic Chemistry, 2019, 58(9):5423-5427. |
[98] | WANG Y, BAI X, WANG F, et al. Nanocasting synjournal of chro-mium doped mesoporous CeO2 with enhanced visible-light photo-catalytic CO2 reduction performance[J]. Journal of Hazardous Ma-terials, 2019, 372:69-76. |
[99] | LI X, WEI S, ZHANG Z, et al. Quantification of the active site den-sity and turnover frequency for soot combustion with O2 on Cr do-ped CeO2[J]. Catalysis Today, 2011, 175(1):112-116. |
[100] | XU X, LIU L, TONG Y, et al. Facile Cr3+-doping strategy dramati-cally promoting Ru/CeO2 for low-temperature CO2 methanation: Unraveling the roles of surface oxygen vacancies and hydroxyl groups[J]. ACS Catalysis, 2021, 11(9):5762-5775. |
[101] | HAO X, YOKO A, INOUE K, et al. Atomistic origin of high-con-centration Ce3+ in {100}-faceted Cr-substituted CeO2 nanocryst-als[J]. Acta Materialia, 2021, 203.Doi: 10.1016/j.actamat.2020.11.015. |
[102] | GANDUGLIA-PIROVANO M V, DA SILVA J L, SAUER J. Den-sity-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2{111}[J]. Physical Review Letters, 2009, 102(2).Doi: 10.1103/PhysRevLett.102.026101. |
/
〈 |
|
〉 |