Inorganic Noval Materials—Carbon Resources Conversion and Utilization

Study on multiscale rare earths new materials for the dual carbon target

  • CHEN Kunfeng ,
  • MA Tianyu ,
  • WANG Anliang ,
  • Zhang Yibo ,
  • XUE Dongfeng
Expand
  • 1. State Key Laboratory of Crystal Materials,Institute of Crystal Materials,Shandong University,Jinan 250100,China
    2. Frontier Institute of Science and Technology,Xi′an Jiaotong University
    3. School of Chemistry and Chemical Engineering, Shandong University
    4. Ganjiang Innovation Academy Chinese Academy of Sciences
    5. Multiscale Crystal Materials Research Center,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences

Received date: 2021-10-21

  Online published: 2021-12-16

Copyright

, 2021, Copyright reserved © 2021. Office of INORGANIC CHEMICALS INDUSTRY All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Medical Association or the Editorial Board, unless this is clearly specified.

Abstract

China will peak carbon before 2030 and achieve carbon neutrality by 2060,which is our solemn commitment to the international community.Materials are an important substantial foundation for developing carbon reduction technology.By introducing the latest research progress of multiscale rare earth new materials in energy storage,exhaust gas/tail gas catalysis, electrocatalysis and permanent magnet motor,the role of multiscale rare earth new materials in tackling the dual carbon goal was analyzed.Rare earth is an important“industrial vitamin”.The unique role of rare earth in functional materials at the scales of atomic ion,nano/micron and bulk was emphatically introduced.In quantum materials,the latest research progress of rare earth strong correlation solid electrolytes,rare earth superconducting materials and rare earth damping materials also were analysed.It is hoped that the development of new rare earth functional materials will play a role in reducing carbon emissions.

Cite this article

CHEN Kunfeng , MA Tianyu , WANG Anliang , Zhang Yibo , XUE Dongfeng . Study on multiscale rare earths new materials for the dual carbon target[J]. Inorganic Chemicals Industry, 2021 , 53(12) : 1 -13 . DOI: 10.19964/j.issn.1006-4990.2021-0635

References

[1] 张玉卓. 为世界可持续发展贡献中国力量,以高水平科技自立自强助力“双碳”目标实现[J]. 人民论坛, 2021(27):6-8.
[2] 欧阳志远, 史作廷, 石敏俊, 等. “碳达峰碳中和”:挑战与对策[J]. 河北经贸大学学报, 2021,42(5):1-11.
[3] CHEISSON T, SCHELTER E J. Rare earth elements:Mendeleev′s bane,modern marvels[J]. Science, 2019,363(6426):489-493.
[4] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J] Nature Reviews Materials, 2016,1(4).Doi: 10.1038/natrevmats.2016.13.
[5] 陈昆峰, 李宫, 梁晰童, 等. 稀土改性电化学储能电极材料的研究进展[J]. 硅酸盐学报, 2016,44(8):1241-1247.
[6] XUE D F, SUN C T, CHEN X Y. Hybridized valence electrons of 4f0-145d0-16s2:The chemical bonding nature of rare earth elements[J]. Journal of Rare Earths, 2017,35(8):837-843.
[7] XUE D F, SUN C T, CHEN X Y. Hybridization:A chemical bonding nature of atoms[J]. Chinese Journal of Chemistry, 2017,35(9):1452-1458.
[8] XUE D F, SUN C T. 4f chemistry towards rare earth materials science and engineering[J]. Science China:Technological Science, 2017,60(11):1767-1768.
[9] LIU C F, NEALE Z G, CAO G Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016,19(2):109-123.
[10] PATEL R L, XIE H, PARK J, et al. Significant capacity and cyclelife improvement of lithium-ion batteries through ultrathin conduc-tive film stabilized cathode particles[J]. Advanced Materials In-terfaces, 2015,3(13).Doi: 10.1002/admi.201600525.
[11] SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Na-ture Materials, 2013,12(9):827-835.
[12] MCCALLA M, ABAKUMOV A M, SAUBANERE M, et al. Visual-ization of O—O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015,350(6267):1516-1521.
[13] WANG H, ZHANG J J, HUANG X D, et al. Half-metallicity in sin-gle-layered manganese dioxide nanosheets by defect engineer-ing[J]. Angewandte Chemie:International Edition, 2015,54(4):1195-1199.
[14] LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018,3(11):936-943.
[15] OUMELLAL Y, ROUGIER A, AYMARD L, et al. Metal hydrides for lithium-ion batteries[J]. Nature Materials, 2008,7(11):916-921.
[16] ZHENG X Y, YANG C K, CHANG X H, et al. Synergism of rare earth trihydrides and graphite in lithium storage:Evidence of hy-drogen-enhanced lithiation[J]. Advanced Materials, 2018,30(3).Doi: 10.1002/adma.201704353.
[17] DAVIS V K, BATES C M, OMICHI K, et al. Room-temperature cy-cling of metal fluoride electrodes:Liquid electrolytes for high-en-ergy fluoride ion cells[J]. Science, 2018,362(6419).Doi: 10.1126/science.aat7070.
[18] REDDY M A, FICHTNER M. Batteries based on fluoride shuttle[J]. Journal of Materials Chemistry, 2011,21(43):17059-17062.
[19] THIEU D T, HAMMAD M, BHATIA, H, et al. CuF2 as reversible cathode for fluoride ion batteries[J]. Advanced Functional Materials, 2017,27(31).Doi: 10.1002/adfm.201701051.
[20] MANTHIRAM A, YU X W, WANG S F, et al. Lithium battery che-mistries enabled by solid-state electrolytes[J]. Nature Reviews Ma-terials, 2017,2(4).Doi: 10.1038/natrevmats.2016.103.
[21] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-ytpe all-solid-state batteries[J]. Advanced Materials, 2018,30(44). Doi: 10.1002/adma.201803075.
[22] 詹望成, 郭耘, 龚学庆, 等. 二氧化铈表面氧的活化及对氧化反应的催化作用[J]. 中国科学:化学, 2012,42(4):433-445.
[23] LI F, ZHANG Y B, XIAO D H, et al. Hydrothermal method prepar-ed Ce-P-O catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range[J]. ChemCatChem, 2010,2(11):1416-1419.
[24] 张昭良, 何洪, 赵震. 汽车尾气三效催化剂研究和应用40年[J]. 环境化学, 2021,40(7):1937-1944.
[25] 张安文. 碳中和为稀土应用带来重大发展机遇[J]. 稀土信息, 2021(5):8-11.
[26] 苏文清. 中国稀土产业经济分析与政策研究[M]. 北京: 中国财政经济出版社, 2009.
[27] 新华社. 我国研制出时速400公里“永磁高铁”电机[N/OL]. 人民日报, (2019-09-18)[2021-10-21]. https://baijiahao.baidu.com/s?id=1644985264038451878& wfr=spider&for=pc.
[28] GUTFLEISCH O. High-temperature samarium cobalt permanent magnets[M] //LIU J,FULLERTON E,GUTFLEISCH O,SELLMYER D.Nanoscale Magnetic Materials and Applications.Boston:Springer, 2009: 337-372.
[29] XIONG X, OHKUBO T, KOYAMA T, et al. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Materialia, 2004,52:737-748.
[30] STRNAT K J. The hard-magnetic properties of rare earth transition metal alloys[J]. IEEE Transactions on Magnetics, 1972,8(3):511-516.
[31] TANG W, ZHANG Y, HADJIPANAYIS G C. Microstructure and magnetic properties of Sm(CobalFexCu0.128Zr0.02)7.0 magnets with Fe substitution[J]. Journal of Magnetism and Magnetic Materials, 2000,221(3):268-272.
[32] DUERRSCHNABEL M, YI M, UESTUENER K, et al. Atomic struc-ture and domain wall pinning in samarium-cobalt-based permanent magnets[J]. Nature Communications, 2017,8(54):1-7.
[33] SUN W, ZHU M, FANG Y, et al. Magnetic properties and microst-ructures of high-performance Sm2Co17 based alloy[J]. Journal of Magnetism and Magnetic Materials, 2015,378:214-216.
[34] CAO J, ZHANG T L, LIU J H, et al. Grain boundary optimization induced substantial squareness enhancement and high performan-ce in iron-rich Sm-Co-Fe-Cu-Zr magnets[J]. Journal of Materials Science & Technology, 2021,85:56-61.
[35] HORIUCHI Y, HAGIWARA M, ENDO M, et al. Influence of inter-mediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets[J]. Journal of Applied Physics, 2015,117(17).Doi: 10.1063/1.4906757.
[36] CHEN H, WANG Y, YAO Y, et al. Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence tra-de-off[J]. Acta Materialia, 2019,164:196-206.
[37] WANG Y, YUE M, WU D, et al. Microstructure modification indu-ced giant coercivity enhancement in Sm(CoFeCuZr)z permanent magnets[J]. Scripta Materialia, 2018,146:231-235.
[38] YAN G, LIU Z, XIA W, et al. Grain boundary modification induced magnetization reversal process and giant coercivity enhancement in 2:17 type SmCo magnets[J]. Journal of Alloys and Compounds, 2019,785:429-435.
[39] SONG K, FANG Y, SUN W, et al. Microstructural analysis during the step-cooling annealing of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 anisotropic sintered magnets[J]. IEEE Transactions on Magnetics, 2017,53(11):1-4.
[40] HORIUCHI Y, HAGIWARA M, OKAMOTO K, et al. Effect of pre-aging treatment on the microstructure and magnetic properties of Sm(Co,Fe,Cu,Zr)7.8 sintered magnets[J]. Materials Transactio-ns, 2014,55(3):482-488.
[41] ZHOU X L, LIU Y, SONG X, et al. Enhanced magnetic properties of Fe-rich Sm-Co-Fe-Cu-Zr magnets by compressive stress-ag-ing[J]. Materialia, 2021,20.Doi: 10.1016/j.mtla.2021.101230.
[42] ZHOU X L, YUAN T, MA T Y. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging[J]. Journal of Materials Science & Technology, 2022,106:70-76.
[43] SAGAWA M, FUJIMURA S, TOGAWA N, et al. New material for permanent-magnets on a base of Nd and Fe[J]. Journal of Applied Physics, 1984,55(6):2083-2087.
[44] YAN M, JIN J Y, MA T Y. Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets[J]. Chinese Physics B, 2019,28(7).Doi: 10.1088/1674-1056/28/7/077507.
[45] HERBST J F. R2Fe14B materials:Intrinsic properties and techno-logical aspects[J]. Reviews of Modern Physics, 1991,63(4):819-898.
[46] UNE Y, SAGAWA M. Development and prospect of the Nd-Fe-B sintering magnets[C] //Proceeding of 21st International Workshop on REPM.Slovenia, 2010: 183-193.
[47] SEPEHRI-AMIN H, UNE Y, OHKUBO T, et al. Microstructure of fine-grained Nd-Fe-B sintered magnets with high coercivity[J]. Scripta Materialia, 2011,65(5):396-399.
[48] PARK K T, HIRAGA K, SAGAWA M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets[C] //Proceedings of the sixteenth international workshop on rare-earth magnets and their applications.Sendai, 2000: 257-264.
[49] LIU Z W, HE J Y, ZHOU Q, et al. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets[J]. Journal of Materials Science & Technology, 2022,98:51-61.
[50] MA T Y, WU B, ZHANG Y J, et al. Enhanced coercivity of Nd-Ce-Fe-B sintered magnets by adding(Nd,Pr)-H powders[J]. Journal of Alloys and Compounds, 2017,721:1-7.
[51] ZHU M G, LI W, WANG J D, et al. Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method[J]. IEEE Transactions on Magnetics, 2014,50(1):1-4.
[52] JIN J Y, MA T Y, ZHANG Y J, et al. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit:Solution to global rare earth criticality[J]. Scientific Reports, 2016,6.Doi: 10.1038/srep32200.
[53] ZHANG Y J, MA T Y, JIN J Y, et al. Effects of REFe2 on microstruc-ture and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Materialia, 2017,128:22-30.
[54] MA T Y, YAN M, WU K Y, et al. Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydri-des[J]. Acta Materialia, 2018,142:18-28.
[55] ZHANG Y J, MA T Y, YAN M, et al. Post-sinter annealing influen-ces on coercivity of multi-main-phase Nd-Ce-Fe-B magnets[J]. Acta Materialia, 2018,146:97-105.
[56] LIU D, ZHAO T Y, LI R, et al. Micromagnetic simulation of the in-fluence of grain boundary on cerium substituted Nd-Fe-B magnets[J]. AIP Advances, 2017,7(5).Doi: 10.1063/1.4972803.
[57] FAN X, GUO S, CHEN K, et al. Tuning Ce distribution for high per-formance Nd-Ce-Fe-B sintered magnets[J]. Journal of Magnetism and Magnetic Materials, 2016,419:394-399.
[58] MA Q, ZHU J T, ZHANG X F, et al. Achievement of high perfor-mance of sintered R-Fe-B magnets based on misch metal doped with PrNd nanoparticles[J]. Rare Metals, 2018,37(3):237-242.
[59] JIN J Y, YAN M, LIU Y S, et al. Attaining high magnetic perfor-mance in as-sintered multi-main-phase Nd-La-Ce-Fe-B mag-nets:Toward skipping the post-sinter annealing treatment[J]. Acta Materialia, 2019,169:248-259.
[60] NIU E, CHEN Z A, CHEN G A, et al. Achievement of high coerciv-ity in sintered R-Fe-B magnets based on misch-metal by dual alloy method[J]. Journal of Applied Physics, 2014,115(11).Doi: 10.1063/1.4869202.
[61] JIANG Q Z, HE L K, LEI W K, et al. Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method[J]. Journal of Magnetism and Mag-netic Materials, 2019,475:746-753.
[62] ZHANG X F, LIU F, LIU Y L, et al. Recycling of sintered Nd-Fe-B magnets doped with PrNd nanoparticles[J]. Journal of Magnetics, 2015,20(2):97-102.
[63] ZHANG S, SAJI S E, YIN Z, et al. Rare-earth incorporated alloy catalysts:Synjournal,properties,and applications[J]. Advanced Ma-terials, 2021,33(16).Doi: 10.1002/adma.202005988.
[64] SANTOS D M F, SEQUEIRA C A C, MACCIò D, et al. Platinum-rare earth electrodes for hydrogen evolution in alkaline water elec-trolysis[J]. International Journal of Hydrogen Energy, 2013,38(8):3137-3145.
[65] ROSALBINO F, DELSANTE S, BORZONE G, et al. Electrocataly-tic behaviour of Co-Ni-R(R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline me-dium[J]. International Journal of Hydrogen Energy, 2008,33(22):6696-6703.
[66] GHOBRIAL S, KIRK D, THORPE S. Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts[J]. Electrocatalysis, 2019,10(3):243-252.
[67] ROSALBINO F, MACCIò D, ANGELINI E, et al. Electrocatalytic properties of Fe-R(R=rare earth metal) crystalline alloys as hydro-gen electrodes in alkaline water electrolysis[J]. Journal of Alloys and Compounds, 2005,403(1/2):275-282.
[68] YAO N, MENG R, WU F, et al. Oxygen-vacancy-induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolu-tion reactions[J]. Applied Catalysis B:Environmental, 2020,277.Doi: 10.1016/j.apcatb.2020.119282.
[69] LI J Y, XIA Z M, XUE Q Y, et al. Insights into the interfacial Lewis acid-base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution[J]. Small, 2021,17(39).Doi: 10.1002/smll.202103018.
[70] GAO W, YAN M, CHEUNG H Y, et al. Modulating electronic struc-ture of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media[J]. Nano Energy, 2017,38:290-296.
[71] ZHOU W, SUNARSO J. Enhancing bi-functional electrocatalytic ac-tivity of perovskite by temperature shock:A case study of LaNiO3-δ[J]. The Journal of Physical Chemistry Letters, 2013,4(17):2982-2988.
[72] ZHU Y L, LIN Q, HU Z W, et al. Self-assembled ruddlesden-pop-per/perovskite hybrid with lattice-oxygen activation as a superior oxygen evolution electrocatalyst[J]. Small, 2020,16(20).Doi: 10.1002/smll.202001204.
[73] KIM J, SHIH P C, TSAO K C, et al. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media[J]. Journal of the American Chemical Society, 2017,139(34):12076-12083.
[74] ZHANG N, WANG C, CHEN J, et al. Metal substitution steering electron correlations in pyrochlore ruthenates for efficient acidic water oxidation[J]. ACS Nano, 2021,15(5):8537-8548.
[75] WANG H P, WANG J, PI Y C, et al. Double Perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis[J]. An-gewandte Chemie, 2019,58(8):2316-2320.
[76] DAI T Y, ZHANG X, SUN M Z, et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction[J]. Advanced Materials, 2021,33(42).Doi: 10.1002/adma.202102593.
[77] LIU Y, MA C, ZHANG Q, et al. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids[J]. Advanced Materials, 2019,31(21).Doi: 10.1002/adma.201900062.
[78] HU Y, JENSEN J O, NORBY P, et al. Mechanistic insights into the synjournal of platinum-rare earth metal nanoalloys by a solid-state chemical route[J]. Chemistry of Materials, 2021,33(2):535-546.
[79] COLIC V, BANDARENKA A S. Pt alloy electrocatalysts for the oxy gen reduction reaction:From model surfaces to nanostructured sy-stems[J]. ACS Catalysis, 2016,6(8):5378-5385.
[80] JOHANSSON T P, ULRIKKEHOLM E T, HERNANDEZ-FERNA-NDEZ P, et al. Pt skin versus Pt skeleton structures of Pt3Sc as elec-trocatalysts for oxygen reduction[J]. Topics in Catalysis, 2014,57:245-254.
[81] YOO S J, HWANG S J, LEE J G, et al. Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt-La alloy electrodes[J]. Energy & Environmental Science, 2012,5(6):7521-7525.
[82] GREELEY J, STEPHENS I E L, BONDARENKO A S, et al. Alloys of platinum and early transition metals as oxygen reduction elec-trocatalysts[J]. Nature Chemistry, 2009,1(7):552-556.
[83] MALACRIDA P, ESCUDERO-ESCRIBANO M, VERDAGUER-CASADEVALL A, et al. Enhanced activity and stability of Pt-La and P-Ce alloys for oxygen electroreduction:The elucidation of the active surface phase[J]. Journal of Materials Chemistry A, 2014,2(12):4234-4243.
[84] GARLYYEV B, POHL M B, COLIC V, et al. High oxygen reduc-tion reaction activity of Pt5Pr electrodes in acidic media[J]. Electrochemistry Communications, 2018,88:10-14.
[85] LEE C H, PARK H N, LEE Y K, et al. Palladium on yttrium-em-bedded carbon nanofibers as electrocatalyst for oxygen reduction reaction in acidic media[J]. Electrochemistry Communications, 2019,106.Doi: 10.1016/j.elecom.2019.106516.
[86] CHEN J Y, LI Y, LU N, et al. Nanoporous PdCe bimetallic nanocu-bes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media[J]. Journal of Materials Chemistry A, 2018,6(46):23560-23568.
[87] XIANG S, WANG L, HUANG C C, et al. Concave cubic PtLa alloy nanocrystals with high-index facets:Controllable synjournal in deep eutectic solvents and their superior electrocatalytic properties for ethanol oxidation[J]. Journal of Power Sources, 2018,399:422-428.
[88] NETO A O, WATANABE A Y, BRANDALISE M, et al. Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J]. Journal of Alloys and Compounds, 2009,476(1/2):288-291.
[89] AN X S, FAN Y J, CHEN D J, et al. Enhanced activity of rare earth doped PtRu/C catalysts for methanol electro-oxidation[J]. Electro-chimica Acta, 2011,56(24):8912-8918.
[90] CORRADINI P G, PEREZ J. Activity,mechanism,and short-term stability evaluation of PtSn-rare earth/C electrocatalysts for the ethanol oxidation reaction[J]. Journal of Solid State Electrochemistry, 2018,22(5):1525-1537.
[91] ZHANG S, ZENG Z C, LI Q Q, et al. Lanthanide electronic pertur-bation in Pt-Ln(La,Ce,Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J]. Energy & Environmental Science, 2021.Doi: 10.1039/d1ee02433g.
[92] TANG Z C, LU G X. High performance rare earth oxides LnOx (Ln=Sc,Y,La,Ce,Pr and Nd) modified Pt/C electrocatalysts for meth-anol electrooxidation[J]. Journal of Power Sources, 2006,162(2):1067-1072.
[93] PEERA S G, LEE T G, SAHU A K. Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactio-ns:An overview[J]. Sustainable Energy & Fuels, 2019,3(8):1866-1891.
[94] CHEONG S W. 5th anniversay of npj quantum materials[J]. Na-ture, 2021,6(1).Doi: 10.1038/s41535-021-00366-x.
[95] ZHANG Z, SCHWANZ D, NARAYANAN B, et al. Perovskite nic-kelates as electric-field sensors in salt water[J]. Nature, 2018,553(7686):68-72.
[96] SUN Y F, KOTIUGA M, LIM D, et al. Strongly correlated perovskite lithium ion shuttles[J]. Proceedings of National Academy of Sci-ences of the United States of America, 2018,115(39):9672-9677.
[97] 霍知节. “揭秘”稀土超导材料[J]. 新材料产业, 2019,12:65-71.
[98] 秦亚媛, 沈瑶, 陈钢, 等. 稀土元素三角格子体系中的阻挫磁性与量子涨落[J]. 物理, 2021,50:454-462.
[99] ZE H, ZHEN M, YUAN D L, et al. Evidence of the berezinskii-ko-sterlitz-thouless phase in a frustrated magnet[J]. Nature Commu-nications, 2020,11.Doi: 10.1038/s41467-020-19380-x.
[100] CHI Y, XU J, XUE H, et al. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behav-iors:Synjournal and characterization of Eu9MgS2B20O41[J]. Journal of The American Chemical Society, 2019,141:9533-9536.
Outlines

/