Research & Development

Research on preparation and adsorption performance of titanium lithium ion sieve

  • Wang Chen ,
  • Lei Jiang ,
  • Qiaozhen Pan ,
  • Weiwei Yang ,
  • Xianrong Zhu ,
  • Linlin Chen ,
  • Wenshuai Zhu
Expand
  • 1. Jiangsu Topfine New Materials Science & Technology Co.,Ltd.,Zhenjiang 212013,China
    2. College of Chemistry and Chemical Engineering,Jiangsu University

Received date: 2020-12-15

  Online published: 2021-10-11

Abstract

The titanium lithium ion sieve(HTO) was synthesized via high temperature solid state method by using amorphous hydrated titanium dioxide and lithium hydroxide as the titanium source and lithium source,respectively.And the scanning electron microscopy(SEM),X-ray diffraction(XRD) and contact angle test were further carried out.The effect of HTO in salt lake brine with high n(Mg)/n(Li) over time on the lithium adsorption capacity was studied.The results showed that the adsorption capacity of HTO in salt lake brine with high n(Mg)/n(Li)reached 24.8 mg/g for 26 h.HTO had excellent selectivity with separation coefficient(αLi Mg) of 4 813.0.After 20 adsorption cycle tests,the lithium adsorption capacity of HTO decrea-sed by only 4.8%,and the dissolution rate of titanium was below 0.08% each time.The results showed that HTO had good cyclic adsorption performance and stability.The HTO had the ability to extract lithium from salt lake brine with high n(Mg)/n(Li),and showed very broad market prospect.

Cite this article

Wang Chen , Lei Jiang , Qiaozhen Pan , Weiwei Yang , Xianrong Zhu , Linlin Chen , Wenshuai Zhu . Research on preparation and adsorption performance of titanium lithium ion sieve[J]. Inorganic Chemicals Industry, 2021 , 53(10) : 47 -51 . DOI: 10.19964/j.issn.1006-4990.2020-0682

References

[1] 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7):796-808.
[2] Xu X, Chen Y M, Wan P Y, et al. Extraction of lithium with functio-nalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84:276-313.
[3] Li X W, Chao Y H, Chen L L, et al. Taming wettability of lithiumion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392.Doi: 10.1016/j.cej.2019.123731.
[4] Li X W, Chen L L, Chao Y H, et al. Amorphous TiO2-derived large-capacity lithium ion sieve for lithium recovery[J]. Chemical Engin-eering and Technology, 2020, 43:1-9.
[5] 许乃才, 黎四霞, 曹佳佳, 等. 锰氧化物锂离子筛的掺杂改性及吸附性能研究[J]. 无机盐工业, 2020, 52(4):37-40.
[6] 张永兴, 马亚梦, 张利珍, 等. 从浓缩盐湖卤水中萃取分离锂的实验研究[J]. 无机盐工业, 2019, 51(3):38-40.
[7] 叶流颖, 曾德文, 陈驰, 等. 卤水提锂吸附剂应用研究进展[J]. 无机盐工业, 2019, 51(3):16-19.
[8] He L H, Xu W H, Song Y F, et al. Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium pho-sphate precipitation[J]. Separation and Purification Technology, 2017, 187:214-220.
[9] Swain B. Recovery and recycling of lithium:A review[J]. Separation and Purification Technology, 2017, 172:388-403.
[10] 宋晶晶, 黄佩佩, 陈立芳, 等. D751树脂对锂离子的吸附性能及机理[J]. 化工进展, 2012, 31(增刊):370-375.
[11] 郭敏, 封志芳, 周园, 等. 吸附法从盐湖卤水中提锂的研究进展[J]. 广州化工, 2016, 44(20):10-13.
[12] 许乃才, 史丹丹, 黎四霞, 等. 利用吸附技术提取盐湖卤水中锂的研究进展[J]. 材料导报A, 2017, 31(9):116-121.
[13] 郭敏, 刘忠, 李权, 等. 铝基锂吸附剂从卤水中吸附提锂的研究及进展[J]. 青海科技, 2019(3):16-20.
[14] 田宗美. 新型锂离子筛的制备及其特性研究[D]. 天津: 天津科技大学, 2016.
[15] Ji Z Y, Yang F J, Zhao Y Y, et al. Preparation of titanium-base li-thium ionic sieve with sodium persulfate as eluent and its perfor-mance[J]. Chemical Engineering Journal, 2017, 328:768-775.
[16] 许鑫. 高效锂离子选择性吸附材料的设计、制备及性能研究[D]. 北京: 北京化工大学, 2017.
[17] 陈自正. H2TiO3锂吸附剂的制备及其吸附性能探究[D]. 上海: 华东理工大学, 2017.
[18] Wang S L, Li P, Zhang X, et al. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve[J]. Hydro-metallurgy, 2017, 174:21-28.
[19] 李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D]. 四川: 成都理工大学, 2011.
[20] 许惠, 陈昌国, 宋应华. 锂离子筛前驱体Li4Mn5O12的制备及性能研究[J]. 无机材料学报, 2013, 28(7):720-726.
Outlines

/