Reviews and Special Topics

Research progress of two-dimensional MXene material of Ti3C2Tx in sodium-ion batteries

  • Bin Zhou ,
  • Xiaojie Bai ,
  • Hao Liu ,
  • Libing Liao
Expand
  • 1. School of Science,China University of Geosciences(Beijing) Beijing 100083,China
    2. School of Materials Science and Technology,China University of Geosciences(Beijing)

Received date: 2020-08-10

  Online published: 2021-08-11

Abstract

As the first prepared mxene material,Ti3C2Tx has excellent electrical,optical,mechanical and thermoelectric prop-erties due to its unique two-dimensional layered structure,showing great potential in the field of electrochemical energy stor-age.Due to the abundance of sodium in the earth and much higher than that of lithium,sodium-ion battery has the advantages of low cost and has become a research hotspot in the field of energy storage in recent years.Based on the properties of Ti3C2Tx,the modification methods of Ti3C2Tx,such as intercalation and pore-forming,and the research progress of composite materials composed of monomers,metal oxides and metal sulfides as electrodes materials for sodium-ion batteries were introduced.Finally,it was pointed out that more targeted optimization methods based on sodium ion deintercalation or reaction should be adopted to improve the overall electrochemical performance.

Cite this article

Bin Zhou , Xiaojie Bai , Hao Liu , Libing Liao . Research progress of two-dimensional MXene material of Ti3C2Tx in sodium-ion batteries[J]. Inorganic Chemicals Industry, 2021 , 53(8) : 21 -26 . DOI: 10.19964/j.issn.1006-4990.2020-0450

References

[1] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocryst-als produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
[2] Hu Q, Sun D, Wu Q, et al. MXene:A new family of promising hydro-gen storage medium[J]. Journal of Physical Chemistry A, 2013, 117(51):14253-14260.
[3] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitri-des(MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2).Doi: 10.1038/natrevmats.2016.98.
[4] 郑伟, 杨莉, 张培根, 等. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15):2513-2537.
[5] 郝峰. 锂离子电池的替代者——钠离子电池研究现状分析[J]. 化工管理, 2018(28):62.
[6] Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2(X=F,OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40):16909-16916.
[7] Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors go-verning the oxidation of two-dimensional Ti3C2 MXene[J]. Nanosc-ale, 2019, 11(17):8387-8393.
[8] Lipatov A, Alhabeb M, Lukatskaya M R, et al. Effect of synjournal on quality,electronic properties and environmental stability of indivi-dual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016, 2(12):1600255-1600264.
[9] Sang X, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide(Ti3C2Tx) MXene[J]. Acs Nano, 2016, 10(10):9193-9200.
[10] Hart J L, Hantanasirisakul K, Lang A C, et al. Control of MXenes′ electronic properties through termination and intercalation[J]. Nat-ure Communications, 2019, 10(1):522-531.
[11] 李友兵, 方菲. 二维过渡金属碳化物的研究现状及在吸波领域的应用[J]. 科技经济导刊, 2017(1):80.
[12] Yun T, Kim H, Iqbal A, et al. Electromagnetic shielding of mono-layer MXene assemblies[J]. Advanced Materials, 2020, 32(9):1906769-1906777.
[13] Fan Z, Wang D, Yuan Y, et al. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 381(1):122696-122703.
[14] Wang X, Xi S, Gao Y, et al. Atomic-scale recognition of surface st-ructure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society, 2015, 137(7):2715-2721.
[15] Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. Acs Nano, 2016, 10(3):3334-3341.
[16] Song X L, Wang H, Jin S M, et al. Oligolayered Ti3C2Tx MXene to-wards high performance lithium/sodium storage[J]. Nano Rese-search, 2020, 13(6):1659-1667.
[17] Xie X, Kretschmer K, Anasori B, et al. Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life[J]. ACS App-lied Nano Materials, 2018, 1(2):505-511.
[18] Zhao M Q, Xie X, Ren C E, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29(37).Doi: 10.1002/adma.201702410.
[19] 谢银斯, 孙丁武, 林维捐, 等. 钠离子电池负极材料研究进展[J]. 电源技术, 2019, 43(2):351-353.
[20] 黄剑锋, 王彩薇, 李嘉胤, 等. 钠离子电池碳基负极材料的研究进展[J]. 材料导报, 2017, 31(21):19-23.
[21] Zhang P, Soomro R A, Guan Z, et al. 3D carbon-coated MXene ar-chitectures with high and ultrafast lithium/sodium-ion storage[J]. Energy Storage Materials, 2020, 29:163-171.
[22] 袁振洲, 刘丹敏, 田楠, 等. 二维黑磷的结构、制备和性能[J]. 化学学报, 2016, 74(06):488-497.
[23] Zhao R, Qian Z, Liu Z, et al. Molecular-level heterostructures as-sembled from layered black phosphorene and Ti3C2 MXene as su-perior anodes for high-performance sodium ion batteries[J]. Nano Energy, 2019, 65:104037-104047.
[24] 肖娜, 潘洋, 宋云, 等. 锑硅纳米复合薄膜作为钠离子电池负极材料的电化学行为研究[J]. 无机材料学报, 2018, 33(5):494-500.
[25] Maughan P A, Seymour V R, Bernardo Gavito R, et al. Porous silica-pillared MXenes with controllable interlayer distances for long-life Na-ion batteries[J]. Langmuir, 2020, 36(16):4370-4382.
[26] Wang P, Lu X, Boyjoo Y, et al. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteri-es[J]. Journal of Power Sources, 2020, 451(1):227756-227764.
[27] Yang C, Liu Y, Sun X, et al. In-situ construction of hierarchical ac-cordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries[J]. Electrochimica Acta, 2018, 271(1):165-172.
[28] 张帅, 李慧, 梁精龙. 二氧化钒的制备工艺现状[J]. 矿产综合利用, 2021(2):119-123.
[29] Wu F, Jiang Y, Ye Z, et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion bat-teries[J]. Journal of Materials Chemistry A, 2019, 7(3):1315-1322.
[30] Guo X, Xie X, Choi S, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24):12445-12452.
[31] 马艳梅. 钠离子电池硫化物负极材料的研究进展[J]. 储能科学与技术, 2019, 8(3):488-494.
[32] 胡平, 陈震宇, 王快社, 等. 二维层状二硫化钼复合材料的研究进展及发展趋势[J]. 化工学报, 2017, 68(4):1286-1298.
[33] Ma K, Jiang H, Hu Y, et al. 2D nanospace confined synjournal of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials, 2018, 28(40).Doi: 10.1002/adfm.201804306.
[34] Chauhan H, Singh M K, Hashmi S A, et al. Synjournal of surfactant-free SnS nanorods by a solvothermal route with better electroche-mical properties towards supercapacitor applications[J]. Rsc Advances, 2015, 5(22):17228-17235.
[35] Zhang Y, Guo B, Hu L, et al. Synjournal of SnS nanoparticle-modi-fied MXene(Ti3C2Tx) composites for enhanced sodium storage[J]. Journal of Alloys and Compounds, 2018, 732(25):448-453.
[36] Wen L, Feng L, Qidong L et al.Heterostructured Bi2S3-Bi2O3 nano-sheets with a built-in electric field for improved sodium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(8):7201-7207.
[37] Yang Q, Gao W, Zhong W, et al. A synergistic Bi2S3/MXene compo-site with enhanced performance as an anode material of sodium-ion batteries[J]. New Journal of Chemistry, 2020, 44(7):3072-3077.
Outlines

/