Environment·Health·Safety

Experimental study on durability of green concrete with nano particle fly ash

  • Ying Dang
Expand
  • Art Department,Hanjiang Normal University,Shiyan 442000,China

Received date: 2020-07-30

  Online published: 2021-07-13

Abstract

:In order to prepare high-performance green concrete,fly ash with different mass fraction (0%~30%) was used to replace cement,and different mass fraction of ZnO nano particles(0%~3%) was added into the concrete to improve the com-pressive strength,tensile strength and chlorine resistance of concrete.Through the preparation of 30 groups of concrete test block test,the results showed that 1)with the increase of ZnO nano particles content,the compressive strength,tensile strength and chlorine resistance of concrete with ZnO nano particles fly ash gradually increased under the same replacement rate of fly ash,2)when the content of nano ZnO was the same,the compressive strength and tensile strength of ZnO nano parti-cles fly ash concrete gradually decreased with the increase of replacement rate of fly ash. However,the chloride resistance of ZnO nano particles fly ash concrete was gradually improved.Therefore,when the content of nano particle ZnO was 1%,the re-placement rate of fly ash was recommended to be below 10%;when the content of nano particle ZnO was 2%,the replacement rate of fly ash was recommended to be less than 20%;when the content of nano particle ZnO was 3%,the replacement rate of fly ash was still below 20%,so it was not recommended that the content of nano particle ZnO exceeded 2%.

Cite this article

Ying Dang . Experimental study on durability of green concrete with nano particle fly ash[J]. Inorganic Chemicals Industry, 2021 , 53(7) : 96 -100 . DOI: 10.19964/j.issn.1006-4990.2020-0430

References

[1] 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2):1-5.
[2] 丁杨, 周双喜, 王中平, 等. 多场耦合循环作用下屋面保温材料耐候性能[J]. 建筑材料学报, 2019, 22(4):638-644,650.
[3] 李帅雄, 秦拥军, 崔壮, 等. 塔克拉玛干沙漠砂混凝土配合比研究[J]. 新型建筑材料, 2019, 46(11):42-45.
[4] 周永, 黄友珍, 周求林. 基于三掺技术的高强混凝土配合比优化设计[J]. 混凝土与水泥制品, 2019(11):89-91.
[5] 马保国, 王信刚, 李相国, 等. 高性能混凝土配合比设计及其存在的问题[J]. 混凝土, 2005(2):12-15.
[6] 陈波, 张文潇, 白银, 等. 盐渍土环境下钻孔灌注桩混凝土配合比优选及耐久性[J]. 建筑技术, 2016, 47(1):46-50.
[7] 万超, 曾志兴. 基于耐久性的高性能混凝土配合比设计方法[J]. 建筑科学, 2009, 25(5):77-80.
[8] 杨绿峰, 周明, 陈正, 等. 基于强度和抗氯盐耐久性指标的混凝土配合比设计及试验研究[J]. 土木工程学报, 2016(12):69-78.
[9] 李化建, 谢永江, 易忠来, 等. 氯盐环境下铁路混凝土配合比参数的研究[J]. 铁道学报, 2012, 34(9):111-116.
[10] 张惠萍. 混凝土配合比对结构物的耐久性影响分析[J]. 公路交通科技:应用技术版, 2009(7):120-122.
[11] 赵迁乔, 宋夫才, 郭培培, 等. 陈家贡特大桥耐久性混凝土配合比设计[J]. 施工技术, 2011(5):98-101.
[12] 张素香, 郭培涛, 喻凡. 水泥路面混凝土配合比设计与耐久性研究[J]. 公路工程, 2017(4):180-184.
[13] 杨华全, 周世华, 董维佳. 白莲河水电站混凝土配合比试验研究[J]. 人民长江, 2007(8):99-101.
[14] 岳修斌, 胡智农, 陆采荣, 等. 泵站工程C25混凝土配合比优化研究[J]. 南水北调与水利科技, 2009, 7(6):173-177.
[15] 苏传菊, 孙养俊. 高强高性能混凝土配合比设计技术研究[J]. 铁道建筑, 2006(5):90-91.
[16] 黄贻凤, 杨成忠, 莫振龙, 等. 聚丙烯纤维路用混凝土配合比设计试验研究[J]. 混凝土, 2008(4):117-119.
[17] 毕苏萍, 党伟, 贺强. 河南地材C80高性能高强混凝土配合比试验[J]. 人民黄河, 2009, 31(8):84-85.
Outlines

/