Inorganic Chemicals Industry >
Research progress of lithium-ion battery separator modified with inorganic ultrafine powder
Received date: 2021-04-01
Online published: 2021-07-08
Research progress of lithium-ion battery separator modified with inorganic ultrafine powder in recent years was reviewed.First,the modification methods and effects of commercial Al2O3 and AlOOH on traditional polyolefin separators and new electrospun separators were introduced,which had been used in the modification of lithium battery separators.Then,the modification of lithium-ion battery separator by conventional inorganic materials TiO2 and SiO2 powder was described.Finally,BN and other unconventional inorganic materials modified separator was introduced briefly.The effect of the composition,structure and performance of the inorganic materials modified separator on the overall performance of lithium-ion batteries were summarized and discussed,and its future development trend of the inorganic material modified lithium battery separator was prospected.
Key words: ultrafine powder; lithium-ion battery separator; alumina; boehmite
Yongyu Yang , Tingting Gao , Peng Tian , Qianjin Xu , Kunji Liu , Guiling Ning . Research progress of lithium-ion battery separator modified with inorganic ultrafine powder[J]. Inorganic Chemicals Industry, 2021 , 53(6) : 49 -58 . DOI: 10.19964/j.issn.1006-4990.2021-0206
[1] | Francis C F J, Kyratzis I L, Best A S. Lithium-ion battery separators for ionic-liquid electrolytes:A review[J]. Advanced Materials, 2020,32(18).Doi: 10.1002/adma.201904205. |
[2] | Li H, Wu D, Wu J, et al. Flexible,high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-on batteries[J]. Advanced Materials, 2017,29(44).Doi: 10.1002/adma.201703548. |
[3] | Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019,4(1):16-25. |
[4] | Liu K, Liu W, Qiu Y, et al. Electrospun core-shell microfiber sepa-rator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances, 2017,3(1).Doi: 10.1126/aciadv.1601978. |
[5] | Liu Z, Jiang Y, Hu Q, et al. Safer lithium-ion batteries from the se-parator aspect:Development and future perspectives[J]. Energy & Environmental Materials, 2020.Doi: 10.1002/eem2.12129. |
[6] | Li Y Q, Yu L, Hu W R, et al. Thermotolerant separators for safe lit-hium-ion batteries under extreme conditions[J]. Journal of Materials Chemistry A, 2020,39(8):20294-20317. |
[7] | Chen X, Zhang R, Zhao R, et al. A dendrite-eating separator for high-areal-capacity lithium-metal batteries[J]. Energy Storage Materials, 2020,31:181-186. |
[8] | 王甲泰, 王尔姣, 张福波, 等. 氧化铝制备技术的研究进展[J]. 无机盐工业, 2017,49(10):12-15. |
[9] | 王晓慧, 宋云华. 氧化铝制备过程中硫酸根的脱除[J]. 无机盐工业, 2018,50(8):34-37. |
[10] | 贾昆仑, 刘世凯, 周淑慧, 等. 纳米氧化铝粉体制备与应用进展[J]. 中国陶瓷, 2020,56(3):8-12. |
[11] | Shi C, Zhang P, Chen L, et al. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separ-ator for lithium-ion batteries[J]. Journal of Power Sources, 2014,270:547-553. |
[12] | Kim P S, Mong A L, Kim D. Thermal,mechanical,and electroche-mical stability enhancement of Al2O3 coated polypropylene/poly-ethylene/polypropylene separator via poly(vinylidene fluoride)- poly(ethoxylated pentaerythritol tetraacrylate) semi-interpenetrat-ing network binder[J]. Journal of Membrane Science, 2020,612. Doi: 10.1016/j.memsci.2020.118481. |
[13] | Xu R, Sheng L, Gong H, et al. High-performance Al2O3/PAALi co-mposite separator prepared by water-based slurry for high-power density lithium-based battery[J]. Advanced Engineering Materials, 2021,23.Doi: 10.1002/adem.202001009. |
[14] | Jiang X Y, Zhu X M, Ai X P, et al. Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017,9(31):25970-25975. |
[15] | Lee J, Lee C L, Park K, et al. Synjournal of an Al2O3-coated polyimi-de nanofiber mat and its electrochemical characteristics as a sepa-rator for lithium ion batteries[J]. Journal of Power Sources, 2014,248:1211-1217. |
[16] | Liu W, Wang L, Luo, Y, et al. An alumina/polyacrylonitrile nanofi-brous composite separator via high-efficiency electro-blown spin-ning and wet-laid technologies for improved lithium-ion batteri-es[J]. Journal of the Electrochemical Society, 2019,166(16):A4088-A4096. |
[17] | Bicy K, Suriyakumar S, Paul A P, et al. Highly lithium ion conduc-tive,Al2O3 decorated electrospun P(VDF-TrFE) membranes for lithium ion battery separators[J]. New Journal of Chemistry, 2018,42(24):19505-19520. |
[18] | 卢杨, 郝春来, 戴晨晨, 等. 纳米勃姆石粉体的制备与应用研究进展[J]. 化工技术与开发, 2020,49(11):30-33. |
[19] | 温俊磊, 江琦. 多种形貌勃姆石纳米材料制备的研究进展[J]. 材料导报, 2016,30(7):42-48. |
[20] | 周粮. 勃姆石纳米棒的水热合成及其气凝胶的制备与性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019. |
[21] | Yang C, Tong H, Luo C, et al. Boehmite particle coating modified microporous polyethylene membrane:A promising separator for li-thium ion batteries[J]. Journal of Power Sources, 2017,348:80-86. |
[22] | Wang Y, Wang Q, Wei X, et al. A novel three-dimensional boehmite nanowhiskers network-coated polyethylene separator for lithium-ion batteries[J]. Ceramics International, 2021,47(7):10153-10162. |
[23] | Zhong G B, Wang Y, Wang C, et al. An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator[J]. Ionics, 2019,25(6):2677-2684. |
[24] | Li X, Chen S L, Xia Z L, et al. High performance of boehmite/poly-acrylonitrile composite nanofiber membrane for polymer lithium-ion battery[J]. RSC Advances, 2020,10(46):27492-27501. |
[25] | Zhao H, Yan J, Deng N, et al. A versatile nano-TiO2 decorated gel separator with derived multi-scale nanofibers towards dendrite-blocking and polysulfide-inhibiting lithium-metal batteries[J]. Journal of Energy Chemistry, 2021,55:190-201. |
[26] | Wang X, Hua H, Peng L, et al. Functional separator for promoting lithium ion migration and its mechanism study[J]. Applied Surface face Science, 2021,542.Doi: 10.1016/j.apsusc.2020.148661. |
[27] | Dong G, Liu B, Sun G, et al. TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ co-mplexation-hydrolysis strategy for advanced and safe LIB separa-tor[J]. Journal of Membrane Science, 2019,577:249-257. |
[28] | Dong G, Dong N, Liu B, et al. Ultrathin inorganic-nanoshell enca-psulation:TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB se-parator[J]. Journal of Membrane Science, 2020,601.Doi: 10.1016/j.memsci.2020.117884. |
[29] | Zhu M, Wang Q, Zhou H, et al. Binder-free TiO2-Coated polypro-pylene separators for advanced lithium-ion batteries[J]. Energy Technology, 2020: 8(7).Doi: 10.1002/ente.202000228. |
[30] | Chen W, Liu Y, Ma Y, et al. Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vi-nylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate)[J]. Journal of Power So-urces, 2015,273:1127-1135. |
[31] | Jiang Y, Ding Y, Zhang P, et al. Temperature-dependent on/off PVP@TiO2 separator for safe Li-storage[J]. Journal of Membrane Science, 2018,565:33-41. |
[32] | Lui K, Zhuo D, Lee H W, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator[J]. Advanced Materials, 2017,29(4).Doi: 10.1002/adma.201603987. |
[33] | Wang X D, Hu Y, Li L, et al. Preparation and performance of poly-propylene separator modified by SiO2/PVA layer for lithium batteries[J]. E-Polymers, 2019,19(1):470-476. |
[34] | 段金炽. 二氧化硅增强锂电池PE隔膜热稳定性和电化学性能的研究[D]. 长春:长春工业大学, 2020. |
[35] | 张玉贞, 刘飞. 一种高浸润性锂离子电池用复合隔膜:中国, 110690400A[P]. 2020-01-14. |
[36] | Zheng H, Wang Z Y, Shi L Y, et al. Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating col-loidal SiO2 nanoparticles with porous shell[J]. Journal of Colloid and Interface Science, 2019,554:29-38. |
[37] | Zhang P, Chen L X, Shi C, et al. Development and characterization of silica tube-coated separator for lithium ion batteries[J]. Journal of Power Sources, 2015,284:10-15. |
[38] | 陈庆, 昝航, 陈涛, 等. 一种锂离子电池用耐热吸液性隔膜及制备方法:中国,111192998A[P]. 2020-05-22. |
[39] | Chen W J, Shi LY, Wang Z Y, et al. Porous cellulose diacetate- SiO2 composite coating on polyethylene separator for high-perfor-mance lithium-ion battery[J]. Carbohtdrate Polymers, 2016,147:517-524. |
[40] | Fu W T, Xu R J, Zhang X Q, et al. Enhanced wettability and elec-trochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co- 4,4′-sulfonyldiphenol) particles[J]. Journal of Power Sources, 2019,436.Doi: 10.1016/j.jpowsour.2019.226839. |
[41] | 贾海, 王海文, 张海峰, 等. 一种锂离子电池用复合涂层隔膜、锂离子电池:中国,111211278A[P]. 2020-05-29. |
[42] | 张开悦, 肖伟, 刘建国, 等. 一种耐热收缩的有机/无机复合型锂电隔膜及其制备方法:中国,110690388A[P]. 2020-01-14. |
[43] | Jiang F J, Nie Y, Yin L, et al. Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries[J]. Jour-nal of Membrane Science, 2016,510:1-9. |
[44] | 刘落恺, 唐萍, 李隆伟, 等. 静电纺PPEK/SiO2锂离子电池隔膜的制备及性能[J]. 精细化工, 2019,36(10):2068-2074. |
[45] | Ma Y, Hu J P, Wang Z T, et al. Poly(vinylidene fluoride)/SiO2 co-mposite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator prop-erties[J]. Journal of Power Sources, 2020,451.Doi: 10.1016/j.jpo wsour.2020.227759. |
[46] | Wang Y, Wang S Q, Fang J Q, et al. A nano-silica modified polyi-imide nanofiber separator with enhanced thermal and wetting pro-perties for high safety lithium-ion batteries[J]. Journal of Membr-ane Science, 2017,537:248-254. |
[47] | 郑玄之. 同轴静电共喷纺技术制备锂离子电池隔膜[D]. 北京:北京化工大学, 2019. |
[48] | Kim S H, Oh Y S, Kwak S K, et al. Janus-faced,dual-conductive/ chemically active battery separator membranes[J]. Advanced Fu-nctional Materials, 2016,26(39):7074-7083. |
[49] | Shin W, Cho J, Kannan A G, et al. Cross-linked composite gel po-lymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries[J]. Scientific Reports, 2016,6.Doi: 10.1038/srep26332. |
[50] | Zhai Y Y, Xiao K, Yu J Y, et al. Fabrication of hierarchical struc-tured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries[J]. Electrochimica Acta, 2015,154:219-226. |
[51] | Arifeen W U, Choi J, Yoo K, et al. A nano-silica/polyacrylonitrile/ polyimide composite separator for advanced fast charging lithium-ion batteries[J]. Chemical Engineering Journal, 2020.Doi: 10.1016/ j.cej.2020.128075. |
[52] | Rodrigues M F, Kalaga K, Gullapalli H, et al. Hexagonal boron ni-tride-based electrolyte composite for Li-ion battery operation from room temperature to 150 ℃[J]. Advanced Energy Materials, 2016. Doi: 10.1002/aenm.201600218. |
[53] | Rodriguez J R, Kim P J, Kim K, et al. Engineered heat dissipation and current distribution boron nitride-graphene layer coated on polypropylene separator for high performance lithium metal battery[J]. Journal of Colloid And Interface Science, 2021,583:362-370. |
[54] | Waqas M, Ali S, Lv W, et al. High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries[J]. Advanced Materials Interfaces, 2019.Doi: 10.1002/admi.201801330. |
[55] | Waqas M, Ali S, Chen D J, et al. A robust bi-layer separator with lewis acid-base interaction for high-rate capacity lithium-ion batte-ries[J]. Composites, 2019,177.Doi: 10.1016/j.compositesb.2019. 107448. |
[56] | Aydin H, Celik S U, Bozkurt A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application[J]. Solid State Ionics, 2017,309:71-76. |
[57] | Chen H Y, Xu P, Chen L, et al. Enhanced ion transport in PVDF- HFP gel polymer electrolyte containing PDA@BN for lithium ion batteries[J]. Materials Letters, 2020,277.Doi: 10.1016/j.matlet.2020.128391. |
[58] | Rahman M M, Mateti S, Cai Q, et al. High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated po-lypropylene separators[J]. Energy Storage Materials, 2019,19:352-359. |
[59] | Zhang S S, Xu K, Jow T R. Alkaline composite film as a separator for rechargeable lithium batteries[J]. Journal of Solid State Elec-trochemistry, 2003,7(8):492-496. |
[60] | Zhang S S, Xu K, Jow T R. An inorganic composite membrane as the separator of Li-ion batteries[J]. Journal of Power Sources, 2005,140(2):361-364. |
[61] | Kim K J, Kwon H K, Park M, et al. Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improving the elec-trochemical performance and thermal stability of lithium ion batte-ries[J]. Physical Chemistry Chemical Physics, 2014,16(20):9337-9343. |
[62] | Xiao W, Wang Z, Zhang Y, et al. Enhanced performance of P(VDF- HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteri-es[J]. Journal of Power Sources, 2018,382:128-134. |
[63] | Li Z H, Chen T T, Liao Y H. Performance enforcement of gel poly-mer electrolyte for lithium ion battery with co-doping silicon dioxi-de and zirconium dioxide nanoparticles[J]. Ionics, 2015,21(10):2763-2770. |
[64] | Prosini P P, Villano P, Carewska M. A novel intrinsically porous separator for self-standing lithium-ion batteries[J]. Electrochimica Acta, 2002,48:227-233. |
[65] | Liang Y Z, Ji L W, Guo B K, et al. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxi-de/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators[J]. Journal of Power Sources, 2011,196:436-441. |
/
〈 |
|
〉 |