Reviews and Special Topics

Research progress on production process of industrial grade ammonium dihydrogen phosphate

  • Zhijuan Wang ,
  • Changtao Wei
Expand
  • 1. Faculty of Chemistry and Environment Science,Qujing Normal University,Qujing 655000,China
    2. Yunnan Yuntianhua Co.,Ltd.

Received date: 2020-06-26

  Online published: 2021-07-08

Abstract

Ammonium dihydrogen phosphate is a typical fine phosphate product,which has a wide range of applications and excellent market prospects in agriculture,fire protection,food,materials and many other fields.With the ever-increasing demand for ammonium dihydrogen phosphate,research on the producing process of industrial grade ammonium dihydrogen phosphate has attracted more and more attention.The main technical routes for the preparation of industrial grade ammonium dihydrogen phosphate include hot-process phosphoric acid route and wet-process purified phosphoric acid route,the hot-pro-cess phosphoric acid route shows high energy consumption,high pollution and high cost,which is gradually restricted,while the route of purifying wet-process phosphoric acid route by solvent extraction to produce industrial grade ammonium dihydro-gen phosphate has high purity,good quality and high degree of automation,but the process is complex,large investment and high cost.Therefore,in recent years,more and more research has been carried out to explore other ways to prepare industrial grade ammonium dihydrogen phosphate.Herein,the technical routes of preparing industrial grade ammonium dihydrogen phosphate from thermal process phosphoric acid,purified wet-process phosphoric acid,wet-process phosphoric acid,raffinate acid and urea phosphate mother liquid were reviewed.The characteristics of each process were discussed in detail.At present,producing high value-added high purity ammonium dihydrogen phosphate from wet-process phosphoric acid is the focus of research which is cheap and easy to obtain.It is urgent for this method to increase the purity of product and P2O5 yield,to improve the filtration performance of the slurry and to explore the appropriate reuse methods of filter residues after removing impurities with ammoniation.

Cite this article

Zhijuan Wang , Changtao Wei . Research progress on production process of industrial grade ammonium dihydrogen phosphate[J]. Inorganic Chemicals Industry, 2021 , 53(6) : 118 -122 . DOI: 10.19964/j.issn.1006-4990.2020-0368

References

[1] 周贵云, 陈仕刚, 蒲秋岑. 湿法磷酸净化生产工业级磷酸一铵的技术现状及关键技术的工业应用[J]. 磷肥与复肥, 2015,30(3):31-33.
[2] Battegazzore D, Alongi J, Duraccio D, et al. Reuse and valorisation of hemp fibres and rice husk particles for fire resistant fibreboards and particleboards[J]. Journal of Polymers and the Environment, 2018,26(9):3731-3744.
[3] Kong L Z, Guan H, Wang X Q. In situ polymerization of furfuryl alco-hol with ammonium dihydrogen phosphate in poplar wood for im-proved dimensional stability and flame retardancy[J]. Acs Sustain-able Chemistry & Engineering, 2018,6(3):3349-3357.
[4] 崔飞, 颜龙. 磷-硼协效阻燃的云南松燃烧性能和热解动力学[J]. 中国安全科学学报, 2018,28(7):38-44.
[5] 郑润, 解田, 刘飞, 等. 磷酸二氢铵应用研究进展[J]. 无机盐工业, 2014,46(4):1-3.
[6] 修学峰, 白海丹. 我国磷肥及大宗磷酸盐产品现状及发展浅析[J]. 磷肥与复肥, 2014,29(3):1-6.
[7] 王毕德, 丁一刚, 何俊, 等. 以三聚氰胺为缩合剂制备结晶Ⅱ型聚磷酸铵阻燃剂的工艺研究[J]. 应用化工, 2017,46(10):1977-1980.
[8] 钟矿, 陈华, 梅军, 等. 磷酸二氢铵-尿素缩聚法制备聚磷酸铵研究[J]. 无机盐工业, 2017,49(10):30-32.
[9] 陈铭, 娄伦武, 卓知杰, 等. 湿法磷酸净化生产工业级磷酸一铵的工艺技术现状[J]. 化肥工业, 2019,46(1):5-7.
[10] 薛丁江. 高纯磷酸二氢铵的提纯工艺研究[D]. 武汉:华中科技大学, 2007.
[11] Bhagawat L I, Patil V S, Kale B B, et al. Sonoprocessing of LiFePO4 nanoparticles and nanocomposites for cathode material in lithium ion batteries[J]. Polymer Composites, 2016,37(6):1874-1880.
[12] Tan Q Q, Yan B, Xu Y X, et al. Preparation and electrochemical performance of carbon-coated LiFePO4/LiMnPO4-positive material for a Li-ion battery[J]. Particuology, 2017,30:144-150.
[13] Lee Y, Lee J, Lee K Y, et al. Facile formation of a Li3PO4 coating layer during the synjournal of a lithium-rich layered oxide for high-capacity lithium-ion batteries[J]. Journal of Power Sources, 2016,315:284-293.
[14] Baig M I, Anis M, Algarni H, et al. Customizing optical and dielec-tric traits of ammonium dihydrogen phosphate(ADP) crystal ex-ploiting Zn2+ ion for photonic device applications[J]. Chinese Jo-urnal of Physics, 2020,63:70-77.
[15] Ganesh V, Shkir M, AlFaify S, et al. Effect of Ni2+ doping on struc-tural,optical,mechanical and dielectric properties of ammonium dihydrogen phosphate(ADP) single crystals:A novel NLO materi-al[J]. Optik, 2016,127(13):5479-5485.
[16] Joshi J H, Dixit K P, Parikh K D, et al. Effect of Sr2+ on growth and properties of ammonium dihydrogen phosphate single crystal[J]. Journal of Materials Science-Materials in Electronics, 2018,29(7):5837-5852.
[17] Batra K, Sinha N, Kumar B. Sunset yellow dye doped ammonium dihydrogen phosphate single crystals with enhanced optical,me-chanical and piezoelectric properties[J]. Journal of Materials Sci-ence-Materials in Electronics, 2019,30(16):14902-14912.
[18] Joshi J H, Kalainathan S, Kanchan D K, et al. Effect of L-threonine on growth and properties of ammonium dihydrogen phosphate crys-tal[J]. Arabian Journal of Chemistry, 2020,13(1):1532-1550.
[19] Joshi J H, Kalainathan S, Joshi M J, et al. Crystal growth,spectro-scopic,second and third order nonlinear optical spectroscopic stu-dies of L-phenylalanine doped ammonium dihydrogen phosphate single crystals[J]. Arabian Journal of Chemistry, 2020,13(4):5018-5026.
[20] Sun S J, Zhang M, Umemura K, et al. Investigation and characteriza-tion of synjournal conditions on sucrose-ammonium dihydrogen pho-sphate (SADP) adhesive:Bond performance and chemical trans-formation[J]. Materials, 2019,12(24).Doi: 10.3390/ma12244078.
[21] Zhao Z Y, Hayashi S, Xu W, et al. A novel eco-friendly wood adhe-sive composed by sucrose and ammonium dihydrogen phospha-te[J]. Polymers, 2018,10(11).Doi: 10.3390/polym10111251.
[22] Zhao Z Y, Sakai S, Wu D, et al. Investigation of synjournal mecha-nism,optimal hot-pressing conditions,and curing behavior of su-crose and ammonium dihydrogen phosphate adhesive[J]. Polymers, 2020,12(1).Doi: 10.3390/polym12010216.
[23] 王智娟, 韦昌桃. 湿法磷酸净化技术研究进展[J]. 化工矿物与加工, 2019,48(10):50-55.
[24] 李青, 武晓霞, 姚美焕. 浅析影响工业磷酸一铵晶型的因素[J]. 山东化工, 2016,45(5):83-84.
[25] 罗影. 镁离子对磷酸一铵结晶过程的影响[D]. 武汉:武汉工程大学, 2016.
[26] 龙辉, 赵东, 曾春华, 等. 用二水法磷酸生产工业级磷酸一铵的实验研究[J]. 硫磷设计与粉体工程, 2014(6):6-8.
[27] 党亚固, 费德君, 林晶. 湿法磷酸生产精细磷酸一铵结晶改善剂研究[J]. 无机盐工业, 2010,42(4):49-51.
[28] 韩永红. 硫酸根离子对磷酸二氢铵晶体的生长及形貌控制的影响研究[D]. 武汉:武汉工程大学, 2018.
[29] 李军, 金央, 罗建洪. 用湿法磷酸制工业磷酸二氢铵工艺综述[J]. 磷肥与复肥, 2016,31(5):17-18.
[30] 熊祥祖, 张林锋, 魏世辕, 等. 固液反萃湿法磷酸生产磷铵的工艺研究[J]. 无机盐工业, 2011,43(1):36-39.
[31] 李新柱, 郭宗端, 贾亮, 等. 甲醇沉淀法净化湿法磷酸制备工业级磷酸一铵[J]. 无机盐工业, 2016,48(2):40-41.
[32] 彭宝林, 项双龙. 肥料级湿法磷酸直接生产工业级磷酸一铵工业化技术研究[J]. 现代化工, 2017,37(7):152-155.
[33] 张胜, 冯克敏, 沈鹏, 等. 一种磷酸一铵的生产工艺:中国,107539971A[P]. 2018-01-05.
[34] 廖吉星, 朱飞武, 彭宝林, 等. 湿法磷酸生产工业级磷酸一铵联产工业级磷酸二铵的方法:中国,103011113A[P]. 2013-04-03.
[35] 曾润国, 刘甍, 魏家贵. 一种用半水磷酸多段中和直接生产工业级磷酸一铵方法:中国,106744762A[P]. 2017-05-31.
[36] 徐魁, 穆劲, 陈彬. 湿法磷酸直接生产工业级磷酸一铵的方法:中国,102320585A[P]. 2012-01-18.
[37] 徐魁, 廖吉星, 潘礼富, 等. 一种湿法磷酸和高纯磷酸结合生产工业级磷酸一铵的方法:中国,103613083A[P]. 2014-03-05.
[38] 王智娟, 向兰. 温度对湿法磷酸选择性除杂的影响[J]. 非金属矿, 2020,43(1):22-24.
[39] 张敏, 温义培, 王娜, 等. 一种氟化盐净化法生产工业磷酸一铵的方法:中国,105600763A[P]. 2016-05-25.
[40] Xu Dejun, Wan Jiali, Xu Dehua, et al. Chelation of metal ions with citric acid in the ammoniation process of wet-process phosphoric acid[J]. The Canadian Journal of Chemical Engineering, 2019,98(3):665-675.
[41] 陈德清, 王娜, 张敏. 湿法磷酸净化生产工业磷酸一铵研究[J]. 无机盐工业, 2016,48(1):38-40.
[42] 沈鹏鹏, 江寿良, 禇红艳. 湿法磷酸生产全水溶磷酸一铵及联产磷酸镁铵的方法:中国,105293459A[P]. 2016-02-03.
[43] 师永林, 韩喜超, 彭明辉, 等. 一种用湿法磷酸连续生产水溶性磷酸一铵的方法:中国,104229764A[P]. 2014-12-24.
[44] 王邵东, 张红映, 李军. 湿法磷酸净化的萃余酸联产磷酸二氢铵和磷酸氢二钠[J]. 无机盐工业, 2008,40(4):39-40.
[45] 范益堃, 丁一刚, 龙秉文, 等. 萃余酸制备工业级磷酸一铵的除镁补氮研究[J]. 无机盐工业, 2017,49(1):38-41.
[46] 廖晓婷, 李军, 陈明. 磷酸脲母液制备工业级磷酸二氢铵工艺研究[J]. 无机盐工业, 2020,52(4):79-83.
[47] 陈遵逵, 丁一刚, 龙秉文, 等. 萃余酸制备工业级磷酸一铵的工艺优化[J]. 化学与生物工程, 2015,32(8):63-66.
[48] 范益堃. 萃余酸生产工业级磷酸一铵工艺优化及氨化数值模拟[D]. 武汉:武汉工程大学, 2016.
[49] 石磊. 磷酸脲制备工业级磷酸二氢铵实验研究[J]. 硫磷设计与粉体工程, 2017(3):42-44.
Outlines

/