Reviews and Special Topics

Preparation,surface functionalization and photoelectrocatalysis of two-dimensional black phosphorus

  • Huanhuan Yang ,
  • Binlu Yu ,
  • Jiahong Wang ,
  • Xuefeng Yu
Expand
  • 1. Shenzhen Engineering Center for the Fabrication of Two-dimensional Atomic Crystals,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
    2. University of Chinese Academy of Sciences

Received date: 2020-10-26

  Online published: 2021-05-12

Abstract

As a new type of single element direct-bandgap semiconductor,black phosphorus shows many excellent character-istics due to its unique two-dimensional structure,which has great potential in the fields of photoelectronics,biology,sensing,information and so on.In recent years,many new methods and technologies have been developed for the preparation and application of black phosphorus,such as liquid-phase ultrasonic/shear,high-energy ball milling,electrochemical stripping and plasma assisted stripping to achieve efficient prepa-ration of two-dimensional black phosphorus.A series of physical and chemical methods have been developed to modify the surface of two-dimensional black phosphorus to inhibit its contact with water and oxygen and improve the stability and physical properties(such as photoelectronics) of two-dimensional black pho-sphorus.With the help of heterostructure construction,doping and other ways to change the surface electronic density of states and increase the active sites of black phosphorus,the catalytic activity of two-dimensional black phosphorus materials has been improved.Basing on preparation,surface functionalization and photocatalysis of two-dimensional black phosphorus,the current research status and possible future development direction were summarized.

Cite this article

Huanhuan Yang , Binlu Yu , Jiahong Wang , Xuefeng Yu . Preparation,surface functionalization and photoelectrocatalysis of two-dimensional black phosphorus[J]. Inorganic Chemicals Industry, 2021 , 53(5) : 13 -20 . DOI: 10.11962/1006-4990.2020-0579

References

[1] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014,9(5):372-378.
[2] Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semi-conductor with a high hole mobility[J]. ACS Nano, 2014,8(4):4033-4041.
[3] Butler S Z, Hollen S M, Cao L, et al. Progress,challenges,and oppo-rtunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013,7(4):2898-2926.
[4] Liu H, Du Y, Deng Y, et al. Semicon ducting black phosphorus:Syn-journal,transport properties and electronic applications[J]. Chemi-cal Society Reviews, 2015,46(27):2732-2743.
[5] Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014,5(1):1-7.
[6] Peng R, Khaliji K, Youngblood N, et al. Mid-infrared electro-optic modulation in few-layer black phosphorus[J]. Nano Letters, 2017,17(10):6315-6320.
[7] Zhang Y, Zheng Y, Rui K, et al. 2D black phosphorus for energy sto-rage and thermoelectric applications[J]. Small, 2017.Doi: 10.1002/smll.201700661.
[8] Zhao Y, Tong L, Li Z, et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided pho-tothermal therapy[J]. Chemistry of Materials, 2017,29(17):7131-7139.
[9] Pang J, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices[J]. Advanced Energy Materials, 2018,8(8):1702093-1702136.
[10] Zhu W, Yogeesh M N, Yang S, et al. Flexible black phosphorus ambipolar transistors,circuits and AM demodulator[J]. Nano Let-ters, 2015,15(3):1883-1890.
[11] Tan C, Cao X, Wu X J, et al. Recent advances in ultrathin two-di-mensional nanomaterials[J]. Chemical Reviews, 2017,117(9):6225-6331.
[12] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and ch-aracterization of few-layer black phosphorus[J]. 2d Materials, 2014,1(2):025001.
[13] Guo Z, Zhang H, Lu S, et al. From black phosphorus to phospho-rene:Basic solvent exfoliation,evolution of raman scattering,and applications to ultrafast photonics[J]. Advanced Functional Mate-rials, 2016,25(45):6996-7002.
[14] Luo W, Yang R, Liu J, et al. Thermal sublimation:A scalable and controllable thinning method for the fabrication of few-layer black phosphorus[J]. Nanotechnology, 2017,28(28):285301-285388.
[15] Huang H, Gao M, Kang Y, et al. Rapid and scalable production of high-quality phosphorene by plasma-liquid technology[J]. Chemi-cal Communications, 2019,56:221-224.
[16] Xu Y J, Shi X Y, Zhang Y S, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon[J]. Nature Communications, 2020,11:1330-1338.
[17] Wu L, Bian S, Huang H, et al. Black phosphorus:An effective feeds-tock for the synjournal of phosphorus-based chemicals[J]. CCS Che-mistry, 2019,1(2):166-172.
[18] Liu S, Huang Z, Ren X, et al. P25/black phosphorus/graphene hy-brid for enhanced photocatalytic activity[J]. Journal of Materials Science:Materials in Electronics, 2017,29(6):4441-4448.
[19] Lei W, Liu G, Zhang J, et al. Black phosphorus nanostructures:Re-cent advances in hybridization,doping and functionalization[J]. Chemical Society Reviews, 2017,46(12):3492-3509.
[20] Qiu P X, Xu C M, Zhou N, et al. Metal-free black phosphorus nano-sheets-decorated graphitic carbon nitride nanosheets with CP bon-ds for excellent photocatalytic nitrogen fixation[J]. Applied Cat-alysis B:Environmental, 2017.Doi: 10.1016/j.apcatb.2017.09.010.
[21] Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phos-phorus as a new saturable absorber for both Q-switching and bodelocking laser operation[J]. Optics Express, 2015,23(10):12823-12833.
[22] Sun Z B, Xie H H, Tang S Y, et al. Ultrasmall black phosphorus qu-antum dots:Synjournal and use as photothermal aents[J]. Angewan-dte Chemie International Edition, 2015,54(39):11526-11530.
[23] Woomer A H, Farnsworth T W, Hu J, et al. Phosphorene:Synthe-sis,scale-up,and quantitative optical spectroscopy[J]. ACS Nano, 2015,9(9):8869-8884.
[24] Ambrosi A, Sofer Z, Pumera M, Electrochemical exfoliation of lay-ered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 2017,56(35):10443-10445.
[25] Wen M, Liu D, Kang Y, et al. Synjournal of high-quality black phos-phorus sponges for all-solid-state supercapacitors[J]. Materials Ho-rizons, 2019,6(1):176-181.
[26] Li Q, Zhou Q, Shi L, et al. Recent advances in oxidation and degra-dation mechanisms of ultrathin 2d materials under ambient condi-tions and their passivation strategies[J]. Journal of Materials Che-mistry A, 2019,7(9):4291-4312.
[27] Zhou Q, Chen Q, Tong Y, et al. Light-induced ambient degradation of few-layer black phosphorus:Mechanism and protection[J]. An-gewandte Chemie International Edition, 2016,55(38):11437-11441.
[28] Tayari V, Hemsworth N, Fakih I, et al. Two-dimensional magneto-transport in a black phosphorus naked quantum well[J]. Nature Communications, 2015,6:7702-7709.
[29] Artel V, Guo Q, Cohen H, et al. Protective molecular passivation of black phosphorous[J]. Npj 2D Materials & Applications, 2017,1(1):27-32.
[30] Liu H, Lian P, Tang Y, et al. Facile synjournal of an air-stable 3D re-duced graphene oxide-phosphorene composite by sonication[J]. Applied Surface Science, 2019.Doi: 10.1016/j.apsusc.2019.01.248 .
[31] Chen X, Wu Y, Wu Z, et al. High quality sandwiched black phos-phorus heterostructure and its quantum oscillations[J]. Nature Co-mmunications, 2015,6:7315-7321.
[32] Pei J, Gai X, Yang J, et al. Producing air-stable monolayers of pho-sphorene and their defect engineering[J]. Nature Communications, 2016,7:10450-10456.
[33] Huang H, He L, Zhou W, et al. Stable black phosphorus/Bi2O3 he-terostructures for synergistic cancer radiotherapy[J]. Biomaterials, 2018,171:12-22.
[34] Zhao Y, Wang H, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Che-mie International Edition, 2016,128(16):5087-5091.
[35] Wu L, Wang J, Lu J, et al. Lanthanide-coordinated black phospho-rus[J]. Small, 2018,14(29):1801405.
[36] Guo Z, Chen S, Wang Z, et al. Metal-ion-modified black phospho-rus with enhanced stability and transistor performance[J]. Advan-ced Materials, 2017,29(42):1703811-1703819.
[37] Yang B, Wan B, Zhou Q, et al. Te-doped black phosphorus field-effect transistors[J]. Advanced Materials, 2016,28(42):9408-9415.
[38] Liu D, Wang J, Lu J, et al. Metal doped phosphorene:Direct synjournal of metal-doped phosphorene with enhanced electro-catalytic hydrogen evolution[J]. Small Methods, 2019.Doi: 10.1002/smtd.201970021.
[39] Wang L, Sofer Z, Pumera M. Voltammetry of layered black phosp-horus:Electrochemistry of multilayer phosphorene[J]. Chemelec-trochem, 2015,2(3):324-327.
[40] Lin Y, Pan Y, Zhang J. In-situ grown of Ni2P nanoparticles on 2D bl-ack phosphorus as a novel hybrid catalyst for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2017,42(12):7951-7956.
[41] He R, Hua J, Zhang A, et al. Molybdenum disulfide-black phos-phorus hybrid nanosheets as a superior catalyst for electrochemi-cal hydrogen evolution[J]. Nano Letters, 2017,17(7):4311-4316.
[42] Wang J, Liu D, Huang H, et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis[J]. Ange-wandte Chemie International Edition, 2018,57(10):2600-2604.
[43] Wang X, Bai L, Lu J, et al. Rapid activation of platinum with black phosphorus for efficient hydrogen evolution[J]. Angewandte Che-mie International Edition, 2019,58(52):19060-19066.
[44] Zhu M, Sun Z, Fujitsuka M, et al. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth va-nadate using visible light[J]. Angewandte Chemie International Edition, 2018,57(8):2160-2164.
[45] Cai X, Mao L, Yang S, et al. Ultrafast charge separation for full so-lar spectrum activated photocatalytic H2 generation in BP-Au-CdS heterostructure[J]. ACS Energy Letters, 2018,3(4):932-939.
[46] Bian S, Wen M, Wang J, et al. Edge-rich black phosphorus for pho-tocatalytic nitrogen fixation[J]. The Journal of Physical Chemistry Letters, 2020,11(3):1052-1058.
[47] Liu Y T, Li D, Yu J, et al. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes:A robust,double-active electrocatalyst toward efficient nitrogen fixation[J]. Angewandte Chemie International Edition, 2019,131(46):16591-16596.
[48] Liu D, Wang J, Bian S, et al. Photoelectrochemical synjournal of am-monia with black phosphorus[J]. Advanced Functional Materials, 2020.Doi: 10.1002/adfm.202002731.
[49] Shen Z R, Sun S T, Wang W J, et al. A black-red phosphorus het-erostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015(7):3285-3288.
[50] Zheng Y, Yu Z, Ou H, et al. Black phosphorus and polymeric car-bon nitride heterostructure for photoinduced molecular oxygen activation[J]. Advanced Functional Materials, 2018,28(10). Doi: 10.1002/adfm.201705407.
[51] Wen M, Wang J, Tong R, et al. A low cost metal-free photocatalyst based on black phosphorus[J]. Advanced Science, 2019.Doi: 10.1002/advs.201801321.
[52] Bai L, Wang X, Tang S, et al. Black phosphorus/platinum hetero-structure:A highly efficient photocatalyst for solar-driven chemi-cal reactions[J]. Advanced Materials, 2018.Doi: 10.1002/adma.201803641.
Outlines

/