Research & Development

Study on preparation and performance of negative electrode materials for batteries of new energy vehicles

  • Kejie Bao ,
  • lingran Lu
Expand
  • 1. Xiangyang Automobile Vocational and Technical College,Xiangyang 441021,China
    2. Huazhong University of Science and Technology

Received date: 2020-09-28

  Online published: 2021-03-11

Abstract

The Ni-NiO/PCNs negative electrode materials were prepared by insitu synthesis.The effects of NaCl template,annealing temperature and annealing time on the phase composition,microstructure and electrochemical properties of the negative electrode materials were investigated.It was demonstrated that Ni/PCNs,Ni-NiO/C and Ni-NiO/PCNs anode materials mainly contain Ni and amorphous C while the last two anode materials also contain NiO phase.The appropriate annealing process for Ni-NiO/PCNs anode materials is at 300 ℃ for 4 h.Ni-NiO particles in Ni-NiO/PCNs anode materials have good dispersion and maintain three-dimensional lamellar structure with average size of 27 nm and Ni-NiO re-alizes the encapsulation of amorphous C.However,too long annealing time(6 h) will lead to the over oxidation and agglomer-ation of Ni particles,while too high temperature(400 ℃) will lead to the agglomeration of particles and the disappearance of three-dimensional lamellar structure.The discharge capacity of Ni-NiO/PCNs negative electrode material is 235 mA·h/g after 5 000 cycles with current density of 1 A/g which remains 83.93% of the first cycle.The discharge capacity and capacity reten-tion rate of Ni-NiO/C and Ni/PCNs negative electrode materials are significantly lower than that of Ni-NiO/PCNs negative electrode materials after 5 000 cycles.Ni-NiO/PCNs negative electrode materials have better cycle stability,which is mainly related to their unique three-dimensional lamellar structure.

Cite this article

Kejie Bao , lingran Lu . Study on preparation and performance of negative electrode materials for batteries of new energy vehicles[J]. Inorganic Chemicals Industry, 2021 , 53(3) : 54 -59 . DOI: 10.11962/1006-4990.2020-0229

References

[1] 赵立敏, 王惠亚, 解启飞, 等. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020,34(7):7026-7035.
[2] 申晨, 王怀国. 我国锂离子电池产业技术发展概况[J]. 新材料产业, 2019(9):15-21.
[3] 张惠泽. 新能源汽车动力电池研究现状[J]. 通信电源技术, 2018,35(7):273-274.
[4] 朱子翼, 董鹏, 张举峰, 等. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020,39(3):1043-1056.
[5] 梁丽萍. 基于高温煅烧法的新能源汽车电池负极材料的制备与性能优化研究[J]. 冶金管理, 2019(17):45-46.
[6] 张雨薇, 刘成龙, 徐志江. 新能源汽车钠离子电池富锂锰基正极材料掺杂改性[J]. 电源技术, 2019,43(10):1596-1600.
[7] 郑世界, 陈翀, 陆琴. 新能源汽车电池负极材料的制备与性能研究[J]. 铸造技术, 2018,39(11):2473-2476.
[8] 陈跃, 郑成博. 循环后负极材料对汽车动力电池性能的影响[J]. 电源技术, 2018,42(9):1278-1280.
[9] Zhang D M, Jia J H, Yang C C, et al. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries[J]. Energy Storage Materials, 2020,24:439-449.
[10] 李通, 史云斌, 刘庆彬, 等. 硒掺杂改性新能源汽车钠离子电池正极材料的结构与电化学性能[J]. 无机盐工业, 2020,52(2):17-22.
[11] Liang D, Gang S, Kokswee G, et al. Facile one-step carbothermal reduction synjournal of Na3V2(PO4)2F3/C serving as cathode for so-dium ion batteries[J]. Electrochimica Acta, 2019,298:459-467.
[12] Liang J, Yuan C, Li H, et al. Growth of SnO2 nanoflowers on N-do-ped carbon nanofibers as anode for Li- and Na-ion batteries[J]. Nano-Micro Letters, 2018,10(2):21-23.
[13] 孙硕, 谢天欢, 张敬远, 等. 磷化铜/石墨烯锂离子负极材料的制备及其电化学性能研究[J]. 常熟理工学院学报, 2020,34(2):11-14.
[14] Zhang L, Hu X, Chen C, et al. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage[J]. Advanced Materials, 2017,29(5):1-8.
[15] 黄艳婷, 镇顺英, 李爱菊. Kapton基多微孔碳作为钠离子电池负极材料[J]. 电源技术, 2019,43(11):1825-1827.
[16] 吴瑞峰, 王宏伟, 皮晓媛. 二硫化钼复合导电碳作为高性能钠离子电池负极材料的研究[J]. 无机盐工业, 2019,51(7):28-32.
[17] Khan M A, Han D W, Gihyeok L, et al. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteri-es[J]. Journal of Alloys and Compounds, 2019,771:987-993.
[18] Chakraborti H. Assessment of amine functionalized graphene nano-flakes for anode materials in Li-ion batteries:an ab initio study[J]. Chemical Physics Letters, 2014,600(4):118-122.
[19] Xiao Y, Zhu Y F, Yao H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019,9(19):1-8.
[20] Hsieh A G, Bhadra S, Hertzberg B J, et al. Electrochemical-acoustic time of flight:in operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015,8(5):1569-1577.
[21] Gao H, Ma W, Yang W, et al. Sodium storage mechanisms of bismuth in sodium ion batteries:An operando X-ray diffraction study[J]. Journal of Power Sources, 2018,379:1-9.
Outlines

/