Reviews and Special Topics

Synthesis of metal organic frameworks material

  • Yanxing Zhang ,
  • Yinan Wu ,
  • Fengting Li
Expand
  • 1. College of Environmental Science and Engineering,Tongji University,Shanghai 200092,China
    2. Shanghai Institute of Pollution Control and Ecological Security

Received date: 2020-08-13

  Online published: 2021-02-06

Abstract

Metal-organic frameworks(MOFs) are a class of porous materials formed by self-assembly of metal ions(or clus-ters) with organic ligands[1] MOFs have extremely developed pore structure,and their specific surface area and pore volume are far superior to other porous materials.The feature of organic/inorganic hybridization has also given infinite structural and functional tunability to MOFs that other materials(such as zeolite and activated carbon,etc.) do not possess[2].In addition,MOFs have persistent pores and cavitation that remove the guest molecules while the host framework remains intact,which makes MOFs exceptionally chemically and physically stable.Based on these characteristics,MOFs have many applications in many fields[3-4],such as catalysis[5],H2 storage[6],CO2 capture[7],drug delivery[8],pollutants adsorption[9],biomedical imaging[10] and so on.The commercialization of MOFs has become a hot spot.Many applications of MOFs are related to sustainable development and “green materials”,but the synthesis process of MOFs itself also needs to consider sustainability and environ-mental impacts.The environmental challenges facing metal organic chemistry are unique because they link the hazards of metalions and organic ligands,and most of the synthesis process requires a lot of energy.This review mainly introduces the green and sustainable synthesis of metal-organic framework materials,which are mainly divided into four aspects:1)using safer or biocompatible ligands;2)using greener,low-cost metal sources;3)development of green solvents;4)solvent-free synthesis.

Cite this article

Yanxing Zhang , Yinan Wu , Fengting Li . Synthesis of metal organic frameworks material[J]. Inorganic Chemicals Industry, 2021 , 53(2) : 17 -23 . DOI: 10.11962/1006-4990.2020-0148

References

[1] Wang C, An B, Lin W. Metal-organic frameworks in solid-gas phase catalysis[J]. ACS Catalysis, 2018,9(1):130-146.
[2] Ferey G. Some suggested perspectives for multifunctional hybrid po-rous solids[J].Dalton Trans.,2009(23):4400-4415.
[3] Kuppler R J, Timmons D J, Fang Q R, et al. Potential applications of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2009,253(23/24):3042-3066.
[4] Zou R, Abdel-Fattah A I, Xu H, et al. Storage and separation appli-cations of nanoporous metal-organic frameworks[J]. Cryst.Eng.Co-mm., 2010,12(5):1337-1353.
[5] Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks:Oppor-tunities for catalysis[J]. Angew.Chem.Int.Ed.Engl., 2009,48(41):7502-7513.
[6] Hu Y H, Zhang L. Hydrogen storage in metal-organic frameworks[J]. Adv.Mater., 2010,22(20):E117-E130.
[7] Hedin N, Chen L, Laaksonen A. Sorbents for CO2 capture from flue gas—Aspects from materials and theoretical chemistry[J]. Nano-scale, 2010,2(10):1819-1841.
[8] Rojas S, Wheatley P S, Quartapelle-Procopio E, et al. Metal-organic frameworks as potential multi-carriers of drugs[J]. Cryst.Eng.Co-mm., 2013,15(45):9364-9367.
[9] Qiu J, Feng Y, Zhang X, et al. Acid-promoted synjournal of UiO-66 for highly selective adsorption of anionic dyes:Adsorption perfor-mance and mechanisms[J]. J Colloid Interface Sci., 2017,499:151-158.
[10] Jung S, Kim Y, Kim S J, et al. Bio-functionalization of metal-organic frameworks by covalent protein conjugation[J]. Chem.Commun.Camb., 2011,47(10):2904-2906.
[11] Müller P, Bucior B, Tuci G, et al. Computational screening,synth-journal and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates[J]. Molecular Systems Design & Engineering, 2019,4(5):1000-1013.
[12] Furukawa H, Cordova K E, O′Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149):1230444.
[13] Yaghi O M, O′Keeffe M, Ockwig N W, et al. Reticular synjournal and the design of new materials[J]. Nature, 2003,423(6941):705-714.
[14] Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012,112(2):724-781.
[15] Kawano M, Kawamichi T, Haneda T, et al. The modular synjournal of functional porous coordination networks[J]. Journal of the Am-erican Chemical Society, 2007,129(50):15418-15419.
[16] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011,111(5):3577-3613.
[17] Lee C Y, Farha O K, Hong B J, et al. Light-harvesting metal-organic frameworks(MOFs):Efficient strut-to-strut energy transfer in bo-dipy and porphyrin-based MOFs[J]. Journal of the American Che-mical Society, 2011,133(40):15858-15861.
[18] Simons C, Hanefeld U, Arends I W C E, et al. Noncovalent anchor-ing of asymmetric hydrogenation catalysts on a new mesoporous aluminosilicate:Application and solvent effects[J]. Chemistry-A European Journal, 2004,10(22):5829-5835.
[19] Gaab M, Trukhan N, Maurer S, et al. The progression of Al-based metal-organic frameworks-From academic research to industrial production and applications[J]. Microporous and mesoporous ma-terials, 2012,157:131-136.
[20] Fri?cic T, Halasz I, ?trukil V, et al. Clean and efficient synjournal us-ing mechanochemistry:Coordination polymers,metal-organic fra-meworks and metallodrugs[J]. Croatica Chemica Acta, 2012,85(3):367-378.
[21] Ibarra I A, Bayliss P A, Pérez E, et al. Near-critical water,a clean-er solvent for the synjournal of a metal-organic framework[J]. Green Chemistry, 2012,14(1):117-122.
[22] Sarawade P, Tan H, Polshettiwar V. Shape-and morphology-con-trolled sustainable synjournal of Cu,Co,and in metal organic frame-works with high CO2 capture capacity[J]. ACS Sustainable Chemi-stry & Engineering, 2013,1(1):66-74.
[23] Stock N, Biswas S. Synjournal of metal-organic frameworks(MOFs):Routes to various MOF topologies,morphologies,and composit-es[J]. Chemical Reviews, 2012,112(2):933-969.
[24] He Y, Zhou W, Qian G, et al. Methane storage in metal-organic fra-meworks[J]. Chemical Society Reviews, 2014,43(16):5657-5678.
[25] Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal-organic frameworks[J]. Chemical Reviews, 2012,112(2):782-835.
[26] Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine[J]. Chemical Reviews, 2012,112(2):1232-1268.
[27] Llabrés I, Xamena F X, Corma A, et al. Applications for metal-or-ganic frameworks(MOFs) as quantum dot semiconductors[J]. Jo-urnal of Physical Chemistry C, 2007,111(1):80-85.
[28] Dhakshinamoorthy A, Asiri A M, Garcia H. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts[J]. Catalysis Science & Technology, 2016,6(14):5238-5261.
[29] Chen J, Shen K, Li Y. Greening the processes of metal-organic fra-mework synjournal and their use in sustainable catalysis[J]. Chem.Sus.Chem., 2017,10(16):3165-3187.
[30] Czaja A, Leung E, Trukhan N, et al. Metal-organic frameworks:Applications from catalysis to gas storage[M]. Weinheim,Germany:Wiley-VCH Verlag GmbH, 2011.
[31] Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-Prospective industrial applications[J]. Journal of Materials Che-mistry, 2006,16(7):626-636.
[32] Czaja A U, Trukhan N, Müller U. Industrial applications of metal-organic frameworks[J]. Chemical Society Reviews, 2009,38(5):1284-1293.
[33] Glavinovic M, Qi F, Katsenis A D, et al. Redox-promoted associa-tive assembly of metal-organic materials[J]. Chemical Science, 2016,7(1):707-712.
[34] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-frame-work nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010,9(2):172-178.
[35] Huxford R C, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers[J]. Current Opinion in Chemical Biology, 2010,14(2):262-268.
[36] Huskic I, Pekov I V, Krivovichev S V, et al. Minerals with metal-organic framework structures[J]. Science Advances, 2016,2(8):e1600621.
[37] Sánchez-Sánchez M, Getachew N, Díaz K, et al. Synjournal of metal-organic frameworks in water at room temperature:Salts as linker sources[J]. Green Chemistry, 2015,17(3):1500-1509.
[38] Dreischarf A C, Lammert M, Stock N, et al. Green synjournal of Zr-CAU-28:Structure and properties of the first Zr-MOF based on 2,5-furandicarboxylic acid[J]. Inorganic Chemistry, 2017,56(4):2270-2277.
[39] Rose M, Weber D, Lotsch B V, et al. Biogenic metal-organic frame-works:2,5-furandicarboxylic acid as versatile building block[J]. Microporous and Mesoporous Materials, 2013,181:217-221.
[40] Crawford D E, Casaban J. Recent developments in mechanochemi-cal materials synjournal by extrusion[J]. Advanced Materials, 2016,28(27):5747-5754.
[41] Rubio-Martinez M, Hadley T D, Batten M P, et al. Scalability of continuous flow production of metal-organic frameworks[J]. Chem.Sus.Chem., 2016,9(9):938-941.
[42] Wi?mann G, Schaate A, Lilienthal S, et al. Modulated synjournal of Zr-fumarate MOF[J]. Microporous and Mesoporous Materials, 2012,152:64-70.
[43] Werpy T, Petersen G. Top value added chemicals from biomass:Volume Ⅰ-results of screening for potential candidates from sugars and synreport gas[R].Golden,CO(US):National Renewable En-ergy Lab., 2004.
[44] Wang Z, Liu H, Wang S, et al. A luminescent Terbium-succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment[J]. Sensors and Actuators B:Chemical, 2015,220:779-787.
[45] Liu J Q, Wang Y Y, Liu P, et al. A novel 3D twofold interpenetrat-ing microporous metal-organic framework containing 1D water ta-pes with cyclic pentamer units[J]. Inorganic Chemistry Communi-cations, 2007,10(3):343-347.
[46] Cliffe M J, Mottillo C, Stein R S, et al. Accelerated aging:A low en-ergy,solvent-free alternative to solvothermal and mechanochemi-cal synjournal of metal-organic materials[J]. Chemical Science, 2012,3(8):2495-2500.
[47] Guillerm V, Gross S, Serre C, et al. A zirconium methacrylate oxo-cluster as precursor for the low-temperature synjournal of porous zirconium(Ⅳ) dicarboxylates[J]. Chemical communications, 2010,46(5):767-769.
[48] Deleu W P R, Stassen I, Jonckheere D, et al. Waste PET (bottles)as a resource or substrate for MOF synjournal[J]. Journal of Materi-als Chemistry A, 2016,4(24):9519-9525.
[49] Lo S H, Raja D S, Chen C W, et al. Waste polyethylene terephtha-late(PET) materials as sustainable precursors for the synjournal of nanoporous MOFs,MIL-47,MIL-53(Cr,Al,Ga) and MIL-101 (Cr)[J]. Dalton Transactions, 2016,45(23):9565-9573.
[50] Ren J, Dyosiba X, Musyoka N M, et al. Green synjournal of chromi-um-based metal-organic framework(Cr-MOF) from waste polyet ethylene terephthalate(PET) bottles for hydrogen storage applica-tions[J]. International Journal of Hydrogen Energy, 2016,41(40):18141-18146.
[51] Hawxwell S M, Brammer L. Solvent hydrolysis leads to an unusual Cu(Ⅱ) metal-organic framework[J]. Cryst.Eng.Comm., 2006,8(6):473-476.
[52] Al-Ghoul M, Issa R, Hmadeh M. Synjournal,size and structural ev-olution of metal-organic framework-199 via a reaction-diffusion process at room temperature[J]. Cryst.Eng.Comm., 2017,19(4):608-612.
[53] Hou S, Wu Y N, Feng L, et al. Green synjournal and evaluation of iron-based metal-organic framework MIL-88B for the efficient de-contamination of arsenate from water[J]. Dalton Transactions, 2018.Doi: 10.1039.C7DT03775A.
[54] Capello C, Fischer U, Hungerbühler K. What is a green solvent? A comprehensive framework for the environmental assessment of sol-vents[J]. Green Chemistry, 2007,9(9):927-934.
[55] Martins G A V, Byrne P J, Allan P, et al. The use of ionic liquids in the synjournal of zinc imidazolate frameworks[J]. Dalton Transac-tions, 2010,39(7):1758-1762.
[56] Jessop P G. Searching for green solvents[J]. Green Chemistry, 2011,13(6):1391-1398.
[57] Parnham E R, Morris R E. Ionothermal synjournal of zeolites,metal-organic frameworks,and inorganic-organic hybrids[J]. Accounts of Chemical Research, 2007,40(10):1005-1013.
[58] Lin J B, Lin R B, Cheng X N, et al. Solvent/additive-free synjournal of porous/zeolitic metal azolate frameworks from metal oxide/hydro-xide[J]. Chemical Communications, 2011,47(32):9185-9187.
[59] Do J L, Friscic T. Mechanochemistry:A force of synjournal[J]. ACS Central Science, 2017,3(1):13-19.
[60] Fri?cic T, Fábián L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding(LAG)[J]. Cryst.Eng.Comm., 2009,11(5):743-745.
[61] Fri?cic T, Reid D G, Halasz I, et al. Ion-and liquid?assisted grin-ding:Improved mechanochemical synjournal of metal-organic frame-works reveals salt inclusion and anion templating[J]. Angewandte Chemie International Edition, 2010,49(4):712-715.
[62] Bennett T D, Cao S, Tan J C, et al. Facile mechanosynjournal of am-orphous zeolitic imidazolate frameworks[J]. Journal of the Ameri-can Chemical Society, 2011,133(37):14546-14549.
[63] Bennett T D, Cheetham A K. Amorphous metal-organic framewo-rks[J]. Accounts of Chemical Research, 2014,47(5):1555-1562.
[64] Kaur P, Hupp J T, Nguyen S T. Porous organic polymers in cataly-sis:Opportunities and challenges[J]. Acs Catalysis, 2011,1(7):819-835.
Outlines

/