Inorganic Chemicals Industry >
Performance of Fe,Co,Ni,Cu and Zn catalysts for hydrogen generation from catalytic hydrolysis of ammonia borane
Received date: 2020-07-13
Online published: 2021-01-08
Fe,Co,Ni,Cu and Zn catalysts were synthesized with impregnation-reduction method,which were evaluated for the hydrogen generation via catalytic hydrolysis of BH3NH3.It was found that,Fe existed as Fe2B in Fe catalysts;Co existed as metallic Co;Ni existed metallic Ni and Ni(OH)2·2H2O;Cu existed as metallic Cu and Cu2O;Zn existed as Zn4SO4(OH)6·4H2O in their corresponding catalysts.In addition,the highest catalytic activity was obtained over Co catalyst,while the lowest cat-alytic activity was observed over Zn catalyst.The catalytic activity over Fe catalysts,Co catalysts,Ni catalysts,Cu catalysts and Zn catalysts was ranked in the order from big to small as Co catalysts,Ni catalysts,Cu catalysts,Fe catalysts and Zn cata-lysts.It was obvious that the catalytic activity over Co,Ni and Cu catalysts with their corresponding metallic state was superior to that obtained over Fe catalyst containing Fe2B alloy phase.Furthermore,nearly no catalytic activity can be observed over Zn catalyst,since it cannot be reduced to metallic state under the preparation condition in this work.When CoCl2 was reduced at 303 K using NaBH4,the reducing agent with molar ratio as 1∶1.3,the highest catalytic activity towards hydrogen production can be achieved.According to the kinetic calculation,it was suggested that the hydrolysis of BH3NH3 towards hydrogen gener-ation over Co catalyst was a zero order and the first order reaction in corresponding to the concentration of BH3NH3 and amount of used Co catalyst,respectively.The activation energy was 58 kJ/mol.
Key words: Co; transition metal; ammonia borane; hydrogen generation
Haijie Sun , Yangyang Mei , Zhihao Chen , Lingxia Chen , Qiaoyu Zhang , Xingai Liu . Performance of Fe,Co,Ni,Cu and Zn catalysts for hydrogen generation from catalytic hydrolysis of ammonia borane[J]. Inorganic Chemicals Industry, 2021 , 53(1) : 102 -106 . DOI: 10.11962/1006-4990.2020-0061
[1] | 李慧珍, 王芃远, 陈学年. 氨硼烷:一种高性能化学储氢材料[J]. 科学通报, 2014,59(19):1823-1837. |
[2] | 孙海杰, 陈凌霞, 张玉凤, 等. 钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2019,51(3):72-76. |
[3] | 孙海杰, 陈凌霞, 黄振旭, 等. 第四周期过渡金属催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2017,49(5):14-17. |
[4] | 孙海杰, 黄振旭, 王雅苹, 等. 非晶态合金Ru-B/ZrO2催化剂催化硼氢化钠水解制氢性能的研究[J]. 化工新型材料, 2018,46(1):102-105. |
[5] | 张帅, 王斯瑶, 姜召, 等. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展, 2019,38(7):3194-3206. |
[6] | 杨晓婧, 尚伟, 李兰兰, 等. 金属催化氨硼烷制氢研究进展[J]. 电源技术, 2014,38(7):1387-1389. |
[7] | 杨宇雯, 冯刚, 卢章辉, 等. 原位合成钴/还原氧化石墨烯纳米粒子催化氨硼烷制氢[J]. 物理化学学报, 2014,30(6):1180-1186. |
[8] | 徐凤勤, 胡小飞, 程方益, 等. 多孔碳负载镍纳米颗粒的制备及催化氨硼烷水解制氢[J]. 无机化学学报, 2015,31(1):103-108. |
[9] | 黄维, 胡娜, 桂田, 等. 沸石咪唑酯骨架结构材料Co-ZIF-9催化氨硼烷水解制氢[J]. 江西师范大学学报:自然科学版, 2015,39(4):404-410. |
[10] | 程军, 邹勇进, 向翠丽, 等. 纳米多孔Co-Ni-B/Cu-BTC复合材料的制备及其催化水解氨硼烷的研究[J]. 功能材料, 2016,47(6):6152-6157. |
[11] | 杨昆, 姚淇露, 卢章辉, 等. 快速合成廉价CuMo纳米粒子高效催化氨硼烷水解产氢[J]. 物理化学学报, 2017,33(5):993-1000. |
[12] | 孙海杰, 江厚兵, 李帅辉, 等. 纳米Ru-Mn/ZrO2催化剂上苯选择加氢制环己烯[J]. 催化学报, 2013,34(4):684-694. |
[13] | 邵阳阳, 靳惠明, 俞亮, 等. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020,34(2):2063-2066. |
[14] | 孙海杰, 陈凌霞, 黄振旭, 等. Ru-Zn催化剂在苯选择加氢制环己烯反应中的粒径效应[J]. 高等学校化学学报, 2015,36(10):1969-1976. |
[15] | 孙海杰, 陈秀丽, 黄振旭, 等. NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响[J]. 化工学报, 2016,67(4):1324-1332. |
[16] | 孙海杰, 郭伟, 周小莉. 非晶态合金 Ru 基催化剂在苯选择加氢中的应用进展[J]. 催化学报, 2011,32(1):1-16. |
[17] | 朱玉玲, 郑修成, 刘蒲. 磁性花生壳负载钯催化剂的制备及催化氨硼烷释氢性能[J]. 信阳师范学院学报:自然科学版, 2019,32(2):276-280. |
[18] | Dong H, Yang H, Ai X, et al. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride cat-alyst[J]. Int.J.Hydrogen Energy, 2003,28(10):1095-1100. |
[19] | 鲍新侠, 于晓飞, 李其明, 等. CoB/ZSM-5非晶态合金负载型催化剂在硼氢化钠水解制氢中的应用[J]. 应用化工, 2014,43(10):1747-1750. |
/
〈 |
|
〉 |