Research & Development

Variation characteristics of LiCl deposit under condition of mining in East Taijnar Salt Lake,Qaidam Basin

  • Guang Han ,
  • Jibin Han ,
  • Jiubo Liu ,
  • Xianhua Hou ,
  • Jinniu Chen ,
  • Yizhang Cao
Expand
  • 1. Qinghai Provincial Key Laboratory of Exploration Research of Salt Lake Resources in Qaidam Basin,Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province,Golmud 816099,China
    2. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,Qinghai Institute of Salt Lakes,Chinese Academy of Sciences
    3. Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes
    4. MNR Key Laboratory of Saline Lake Resources and Environments,Institute of Mineral Resources,CAGS

Received date: 2020-09-04

  Online published: 2020-12-15

Abstract

The East Taijnar Salt Lake is an important LiCl deposit in brine of Qaidam Basin,China.To study on the variation characteristics of this ore deposit before and after mining is of great significance for the rational and sustainable utilization of lithium resources in brine.Base on existing borehole data(before mining) and the measured borehole data(after mining),the hydrochemistry of the LiCl deposit,the structure of the ore body and the water-salt equilibrium characteristics of the mining area were compared and researched.The results indicated that the hydrochemical characteristics of the LiCl deposit changed obviously after mining,the phreatic brine was further concentrated,and the evolution generally attained the stage of potassium mixed salt(blodite) precipitation,and the grade of LiCl of the deposit was higher than that before mining.The evolution of the confined brine was changed to relative desalination,which lain in the transition zone between picromerite and blodite in the K+,Na+/Mg2+/Cl-,SO42--H2O phase diagram at 25 ℃,and the LiCl grade of the deposit was lower than that before mining. After mining,the thickness and area of the phreatic brine deposit decreased greatly,and a discontinuous north-south ore bed was formed,which changed the original forms of continuous strip distribution before mining.There was no significant change in the confined brine ore body after mining.The original water-salt balance changed after mining,water quantity change ΔQ and salt quantity change ΔQc were -2.83×108 m3/a and -3.331×107 t/a,respectively,indicating that salt quantity was positive equilibrium,and salt minerals were continue to precipitate.The study could provide the basis for rational exploitation and scientific protection of mining area.

Cite this article

Guang Han , Jibin Han , Jiubo Liu , Xianhua Hou , Jinniu Chen , Yizhang Cao . Variation characteristics of LiCl deposit under condition of mining in East Taijnar Salt Lake,Qaidam Basin[J]. Inorganic Chemicals Industry, 2020 , 52(12) : 17 -22 . DOI: 10.11962/1006-4990.2020-0251

References

[1] 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019,39(5):26-40.
[2] 苏彤, 郭敏, 刘忠, 等. 全球锂资源综合评述[J]. 盐湖研究, 2019,27(3):104-111.
[3] Choubey P K, Chung K S, Kim M S, et al. Advance review on the exploitation of the prominent energy-storage element lithium.PartⅡ:From sea water and spent lithium ion batteries(LIBs)[J]. Minerals Engineering, 2017,110:104-121.
[4] Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources:Relative importance of pegmatite brine and other deposits[J]. Ore Geology Reviews, 2012,48:55-69.
[5] Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability:A constraint for electric vehicles[J]. Journal of Industrial EcoEcology, 2011, 1-16.
[6] 展大鹏, 余俊清, 高春亮, 等. 柴达木盆地四盐湖卤水锂资源形成的水文地球化学条件[J]. 湖泊科学, 2010,22(5):783-792.
[7] Yu J Q, Gao C L, Cheng A Y, et al. Geomorphic,hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin,northern Tibetan Plateau,China[J]. Ore Geology Reviews, 2013,50:171-183.
[8] 荣光忠, 覃功平, 朱长海, 等. 青海省柴达木盆地东台吉乃尔湖锂硼钾矿床勘探报告[R]. 西宁:青海省地质矿产勘察院, 2002.
[9] 张彭熹, 郑喜玉, 关玉奎. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987.
[10] 沈照理, 刘光亚, 杨成田, 等. 水文地质学[M]. 北京: 科学出版社, 1985.
[11] 袁见齐, 杨谦, 孙大鹏, 等. 察尔汗盐湖钾盐矿床的形成条件[M]. 北京: 地质出版社, 1995.
[12] 魏新俊, 邵长铎, 王弭力, 等. 柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究[M]. 北京: 地质出版社, 1993.
[13] 眭跃建, 吴海霞, 田建磊. 乌勇布拉克卤水矿床水盐均衡计算方法[J]. 西部探矿工程, 2006(S1):199-200.
[14] 陈奥. 基于遥感技术的盐湖资源开发行为对柴达木盆地盐湖区景观变化的影响评估[D]. 西宁:中国科学院青海盐湖研究所, 2018.
[15] 党学亚, 常亮, 卢娜. 青藏高原暖湿化对柴达木水资源与环境的影响[J]. 中国地质, 2019,46(2):359-368.
[16] 韩积斌, 许建新, 王国强, 等. 柴达木盆地尕斯库勒盐湖区成盐物质的来源与水力迁移作用[J]. 湖泊科学, 2017,29(6):1551-1560.
[17] Wei H Z, Jiang S Y, Tan H B, et al. Boron isotope geochemistry of salt sediments from the dongtai salt lake in qaidam basin:Boron budget and sources[J]. Chemical Geology, 2014,380:74-83.
[18] 韩积斌, 许建新, 徐凯, 等. 柴达木盆地尕斯库勒盐湖地表水-地下水的转化与铀的补给通量[J]. 湖泊科学, 2019,31(6):1738-1748.
[19] 徐威. 那棱格勒河冲洪积平原地下水循环模式及其对人类活动的响应研究[D]. 长春:吉林大学, 2015.
[20] 李建森, 凌智永, 山发寿, 等. 东昆仑山南、北两侧富锂盐湖成因的氢、氧和锶同位素指示[J]. 湿地科学, 2019,17(4):391-398.
Outlines

/