Research & Development

Effect of Mg2+ on hydrolysis of water soluble ammonium polyphosphate

  • Yan Wang ,
  • Xinlong Wang ,
  • Dehua Xu ,
  • Dejun Xu ,
  • Jingxu Yang
Expand
  • Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources,Ministry of Education,School of Chemical Engineering,Sichuan University,Chengdu 610065,China

Received date: 2020-04-22

  Online published: 2020-11-24

Abstract

Water-soluble ammonium polyphosphate(APP) as a chelated liquid fertilizer has received extensive attention and application in agriculture in recent years.The effect of magnesium ion on the hydrolysis of two water-soluble APPs was systematically studied by using water-soluble APP with two different polymerization degrees as raw materials.The results showed that the mass fraction of ammonium orthophosphate changed from 8.1% to 32.7%,31.3%,28.1%,30.7% and 32.1% when the mass fraction of Mg2+ in APP2 solution increased from 0 to 0.5%,1.0%,1.5% and 2.0% after 110 h at 60 ℃.When the mass fraction of Mg2+ in the APP8 solution increased from 0 to 0.5%,1.0%,2.0%,and 4.0%,the mass fraction of ammonium orthophosphate changed from 13.3% to 53.3%,51.5%,51.6%,52.4%,and 46.9%,respectively.Combined with the firstorder reaction kinetics model,it was found that Mg2+ had a slowing effect on the hydrolysis of water-soluble APP.The water-soluble APP with different polymerization degree distribution had different changes in the content of ammonium orthophosphate at the same Mg2+ concentration.For the crop demand,different quality water-soluble APP should be used.

Cite this article

Yan Wang , Xinlong Wang , Dehua Xu , Dejun Xu , Jingxu Yang . Effect of Mg2+ on hydrolysis of water soluble ammonium polyphosphate[J]. Inorganic Chemicals Industry, 2020 , 52(10) : 72 -76 . DOI: 10.11962/1006-4990.2019-0590

References

[1] Braun U, Schartel B, Fichera M A, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6[J]. Polymer Degradation and Stability, 2007,92(8):1528-1545.
[2] Annakutty K S, Kishore K. Flame retardant polyphosphate esters:1.Condensation polymers of bisphenols with aryl phosphorodichloridates:synjournal,characterization and thermal studies[J]. Polymer, 1988,29(4):756-761.
[3] 梁文, 王辛龙, 陈建钧, 等. 水溶性聚磷酸铵螯合锌的规律研究[J]. 无机盐工业, 2019,51(11):20-22.
[4] Huang R, Wan B, Hultz M, et al. Phosphatase-mediated hydrolysis of linear polyphosphates[J]. Environmental Science & Technology, 2018,52(3):1183-1190.
[5] 郑福林, 刘代俊, 陈建钧. 农用聚磷酸铵的制备与表征[J]. 无机盐工业, 2017,49(2):28-30,86.
[6] Engelstad O P, Allen S E. Ammonium polyphosphate and ammonium orthophosphate as sources of phosphorus for Jerusalem artichoke[J]. Alexandria Science Exchange Journal, 2015,36(1):47-57.
[7] 徐保明, 徐思思, 唐强, 等. 水溶性聚磷酸铵的合成工艺进展[J]. 无机盐工业, 2017,49(4):5-8.
[8] Thilo E, Wieker W. Study of degradation of polyphosphates in aqueous solution[J]. Journal of Polymer Science, 1961,53(158):55-59.
[9] 谢汶级, 王辛龙, 许德华, 等. 不同pH对焦磷酸铵水解的影响[J]. 无机盐工业, 2019,51(10):28-31.
[10] 王蕾, 邓兰生, 涂攀峰, 等. 聚磷酸铵水解因素研究进展及在肥料中的应用[J]. 磷肥与复肥, 2015,30(4):25-27.
[11] McBeath T M, Lombi E, McLaughlin M J, et al. Polyphosphate-fer-tilizer solution stability with time,temperature,and pH[J]. Journal of Plant Nutrition and Soil Science, 2007,170(3):387-391.
[12] 杨军芳, 周晓芬, 冯伟. 土壤与植物镁素研究进展概述[J]. 河北农业科学, 2008(3):91-93,96.
[13] Svoboda L H E, Kovárová M. Simplified post-column derivatization method for ion chromatography of linear polyphosphates[J]. Journal of Separation Science, 2002,25(10/11):715-718.
[14] Xie W, Wang X, Li Y, et al. Simultaneous determination of various phosphates in water-soluble ammonium polyphosphate[J]. Chromatographia, 2019,82(11):1687-1695.
[15] Williard J W, Farr T D, Hatfield J D. Hydrolysis of ammonium pyro-,tripoly-,and tetrapolyphosphate at 25.deg.and 50.deg[J]. Journal of Chemical and Engineering Data, 1975,20(3):276-283.
[16] Steveninck V J. The influence of metal ions on the hydrolysis of polyphosphates[J]. Biochemistry, 1966,5(6):1998-2002.
[17] Yang J, Kong X, Xu D, et al. Evolution of the polydispersity of ammonium polyphosphate in a reactive extrusion process:Polycondensation mechanism and kinetics[J]. Chemical Engineering Journal, 2019,359:1453-1462.
Outlines

/