Environment·Health·Safety

Effect of type and concentration of salt solution on synthesis of α-semi-water desulfurization gypsum

  • Ping Chen ,
  • Yu Tian ,
  • Cheng Hu
Expand
  • 1. Guangxi Key Laboratory of New Energy and Building Energy Saving,Guilin University of Technology,Guilin 541004,China
    2. Guangxi Engineering and Technology Center for Utilization of Industrial Waste Residue in Building Materials,Guilin University of Technology
    3. The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology

Received date: 2020-04-25

  Online published: 2020-11-24

Abstract

In order to solve the potential harm to the environment caused by the large amount of desulfurization gypsum,improve the added value of desulfurization gypsum,the atmospheric salt solution water thermal method was used to explore the optimal synthesis process of α-hemihydrate gypsum with the desulfurization gypsum of power plant as raw material.The effect of salt solution type and concentration on the synthesis process,synthesis product composition and structure of α-semi-water desulfurization gypsum was studied.The results showed that in the CaCl2 and MgCl2 salt solutions,the formation process of hemihydrate gypsum was hindered due to the same ion effect and the formation of magnesium sulfate ion pairs.The higher concentration of KCl and NaCl salt solution can transform the dihydrate gypsum,wherein KCl will cause the hemihydrate gypsum to be excessively dehydrated to form anhydrous potassium gypsum.The NaCl salt solution can convert the dihydrate gypsum into hemihydrate gypsum and maintain it for a long time.By comparing the optimal synthesis process was obtained as follows:NaCl solution mass fraction was 15%,system reaction temperature was 95 ℃,mass ratio of solid to water was 1∶4,stirring rate was 150 r/min and synthesis time was 3 h.Under the conditions,hexagonal short columnar α-hemihydrate gypsum with an aspect ratio of about 5∶1 was obtained.

Cite this article

Ping Chen , Yu Tian , Cheng Hu . Effect of type and concentration of salt solution on synthesis of α-semi-water desulfurization gypsum[J]. Inorganic Chemicals Industry, 2020 , 52(10) : 130 -134 . DOI: 10.11962/1006-4990.2019-0593

References

[1] 张稼祥. 脱硫石膏制备α型高强石膏及其改性研究[D]. 南京:南京工业大学, 2016.
[2] 陈勇, 张毅, 李东旭. 利用脱硫石膏制备α-半水石膏的蒸压制度研究[J]. 硅酸盐通报, 2015,34(5):1241-1245.
[3] 林敏. 水热法α-半水脱硫石膏制备工艺及转晶技术研究[D]. 重庆:重庆大学, 2009.
[4] 陈燕, 岳文海, 董若兰. 石膏建筑材料[M]. 北京: 中国建材工业出版社, 2003:72-73,158-164.
[5] 胡秀丽, 李林晴. 脱硫石膏综合利用[J]. 华北电力技术, 2010,12:42-45.
[6] 岳文海, 王志. α-半水石膏晶形转化剂作用机理的探讨[J]. 武汉工业大学学报, 1996,18(2):1-4.
[7] 锄本峻司, 原尚道, 向山广. Effects of salts on the formation of α-calcium sulfate hemihydrates in aqueous salts solution under the atmospheric pressure[J]. Gypsum & Lime, 1985,199:9-14.
[8] Wu Xiaoqin, Wu Zhongbiao. Modification of FGD gypsum in hydrothermal mixed salt solution[J]. Journal of Environmental Science, 2006,18(1):170-175.
[9] 吴晓琴, 杨有余, 裘建军. 常压盐溶液法转化脱硫石膏制备α-半水石膏的相变机理[J]. 武汉科技大学学报, 2011,34(1):37-41.
[10] 刘先锋, 舒渝艳, 魏桂芳, 等. 盐溶液浓度对常压水热法制备α-半水脱硫石膏的影响[J]. 科学技术与工程, 2012,12(16):3877-3879.
[11] 赵俊梅, 张金山, 李侠. 脱硫石膏常压盐溶液法制备半水石膏的试验研究[J]. 非金属矿, 2012,35(2):33-35.
[12] 胥桂萍, 童仕唐. 从FGD残渣中制备α型半水石膏结晶机理的研究[J]. 吉林化工学院学报, 2002,19(1):9-12.
[13] 董秀芹, 赵建华, 宋树峰, 等. 脱硫石膏液相法生产α-石膏粉的工业化试验研究[J]. 硫磷设计与粉体工程, 2009(5):8-11.
[14] 姜岩, 李晓鸥, 李东胜, 等. 高强石膏的研究现状[J]. 当代化工, 2014,43(2):216-222.
[15] 何伟, 吴晓琴, 刘芳. 硫酸钙在Ca-Mg-K-Cl-H2O体系转化过程中溶解度研究[J]. 环境科学与技术, 2010,33(5):35-38.
[16] 王宇斌, 文堪, 王森, 等. 同离子效应对半水硫酸钙形貌的调控机理[J]. 高校化学工程学报, 2018,32(6):1444-1449.
[17] 石征宇, 石大安, 吕孟. 物质溶解度影响因素的调研[J]. 大众科技, 2007,99:102-103.
[18] 汪潇, 金彪, 张小婷, 等. MgSO4/MgCl2对脱硫石膏溶解度及其晶须结晶的影响[J]. 河南科技大学学报:自然科学版, 2018,39(2):6-10.
[19] 马宪法, 官宝红. 常压KCl溶液中α-半水石膏的脱水过程[J]. 硅酸盐学报, 2009,37(10):1654-1659.
[20] 吴晓琴, 孔艳萍. K-Ca-Mg-Cl-H2O体系中硫酸钙结晶介稳区的研究[J]. 环境工程学报, 2011,5(6):1431-1434.
Outlines

/