Environment·Health·Safety

Preparation of battery-grade lithium carbonate from lithium-containing industrial waste

  • Min Hu ,
  • Hanzhang Gong ,
  • Huadong Wu ,
  • Jia Guo ,
  • Linfeng Zhang ,
  • Yuxin Zhou
Expand
  • Key Laboratory for Green Chemical Process of Ministry of Education,Wuhan Institute of Technology,Wuhan 430073,China

Received date: 2019-09-22

  Online published: 2020-03-31

Abstract

The market demand for battery-grade lithium carbonate is increasing with the rapid development of the battery industry.The lithium-containing industrial waste from a company was used as raw material,and it was purified by carbonization decomposition method,and the filtrate filter cake cycle was repeated,and finally the battery-grade lithium carbonate meeting the requirement of the industry standard was obtained.The reaction conditions of the carbonization process was as follows:the solid-liquid mass-volume ratio was 1:50,the stirring speed was 300 r/min,the CO2 flow rate was 10 L/min,the reaction tem-perature was 20 ℃ and the reaction time was 60 min.The reaction conditions of the thermal decomposition process was as follows: the stirring speed was 300 r/min,the reaction temperature was 95 ℃ and the reaction time was 60 min.After a five-stage filtrate cake cycle for the Li2CO3 obtained by the carbonization-and decomposition-processes,the final purified Li2CO3 product can fully meets the requirement of battery-grade lithium carbonate industry standard.The content of Li2CO3 in the product was 99.71%,the mass fractions of Mg,Ca and K were reduced to 0.005 3%,0.005 0% and 0.000 9%,respectively.The yield was maintained above 55%,and the product had a rod shape,uniform size and good dispersion.

Cite this article

Min Hu , Hanzhang Gong , Huadong Wu , Jia Guo , Linfeng Zhang , Yuxin Zhou . Preparation of battery-grade lithium carbonate from lithium-containing industrial waste[J]. Inorganic Chemicals Industry, 2020 , 52(3) : 80 -84 . DOI: 10.11962/1006-4990.2019-0221

References

[1] 魏昊, 田欢, 张梦龙 , 等. 电池级碳酸锂制备与提纯的研究进展[J]. 现代化工, 2018,38(8):33-37.
[2] 刘光启, 马连湘, 刘杰 . 化学化工物性数据手册[M]. 北京: 化学工业出版社, 2002.
[3] 尹记帅, 孙文亮, 郝如斯 , 等. 沉锂反应条件对碳酸锂纯度及杂质影响的研究[J]. 无机盐工业, 2019,51(3):29-33.
[4] 乜贞, 卜令忠, 王云生 , 等. 盐湖卤水资源锂镁分离的工艺技术[J]. 无机盐工业, 2013,45(5):1-4.
[5] Arikan M, Sobolev K, Ertün T , et al. Properties of blended cements with thermally activated kaolin[J]. Construction & Building Materi-als, 2009,23(1):62-70.
[6] Scrosati B, Garche J . Lithium batteries:Status,prospects and fut-ure[J]. Journal of Power Sources, 2010,195(9):2419-2430.
[7] 李燕茹, 朱亮, 袁建军 , 等. 粗级碳酸锂提纯工艺过程研究[J]. 无机盐工业, 2013,45(8):15-17.
[8] 赵春龙, 孙峙, 郑晓洪 , 等. 碳酸锂的制备及其纯化过程的研究进展[J]. 过程工程学报, 2018,18(1):20-28.
[9] 祁双文, 李积仓 . 粗级碳酸锂提纯工艺过程分析[J]. 化工管理, 2016(31):221.
[10] Kesler S E, Gruber P W, Medina P A , et al. Global lithium resour-ces:Relative importance of pegmatite,brine and other deposits[J]. Ore Geology Reviews, 2012,48(5):55-69.
[11] Yi W T, Yan C Y, Ma P H . Crystallization kinetics of Li2CO3 from LiHCO3 solutions[J]. Journal of Crystal Growth, 2010,312(16/17):2345-2350.
[12] 王珂 . 从锂云母中提取碱金属化合物[D]. 上海:华东理工大学, 2013.
[13] 刘人生, 田礼平, 熊铜兴 . 高杂质碳酸锂提纯工艺研究[J]. 化工技术与开发, 2018,47(7):5-7.
[14] 王运其 . 浅谈高纯碳酸锂的制备方法[J]. 新疆有色金属, 2009,32(z1):92-93.
[15] Wu H, Cui Y . Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012,7(5):414-429.
[16] 陈宁 . 盐湖卤水碳化沉锂过程研究及工艺优化[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2017.
[17] 汪发波, 王林生, 文小强 . 碳化分解法提纯碳酸锂的研究[J]. 有色金属科学与工程, 2013,4(2):41-45.
[18] 赵泉峰, 吴鉴, 姚耀春 . 碳化分解法制备电池级碳酸锂的研究[J]. 材料导报, 2014,28(10):75-77.
[19] 周启立, 王莫飞 . 碳化法制备高纯碳酸锂[J]. 无机盐工业, 2012,44(7):36-37.
[20] GB/T 11064.1—2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法第1部分:碳酸锂量的测定(酸碱滴定法)[S].
Outlines

/