Industrial Techniques

Study on technological conditions of polymeric calcium magnesium phosphate fertilizer from phosphoric acid activated phosphate tailings

  • Jianguo Zheng ,
  • Nanshu Yu ,
  • Yongxiu Liu ,
  • Tao Song ,
  • Zhaoping Hu
Expand
  • 1. State Key Laboratory of Nutrition Resources Integrated Utilization,Kingenta Ecological Engineering Group Co.,Ltd.,Linzhu 276700,China
    2. Engineering Technology Research Center For SCRF
    3. Guizhou Phosphorus Chemical Cleaner Production Engineering Technology Research Center

Received date: 2019-08-17

  Online published: 2020-02-26

Abstract

In order to reduce the environmental damage caused by phosphorus tailings,the synthesis of polymeric calcium magnesium phosphate fertilizer from phosphorus tailings by high temperature intermolecular dehydration polymerization was studied.Phosphoric acid and phosphorus tailings were mixed at the amount-of-substance ratio of P2O5 to(CaO+MgO) of 1∶(1.2~1.8),and the slurry was calcined at 250~600 ℃ for 1~5 h to obtain dry-base products.The results showed that the degree of polymerization of polymeric calcium magnesium phosphate fertilizer was 1~4,the polymerization rate of P2O5 was more than 80%,the total P2O5 was 50%~60%(mass fraction),the mass fraction of CaO was about 17%,the mass fraction of MgO was about 12%,and the product structure was porous spherical structure.The product can be flexibly adjusted according to the needs of different regions to obtain products of different properties.The research has been put into trial production in pilot plant,and the formal production workshop is currently being constructed in Guizhou,China,with a target capacity of 200 kt/a.

Cite this article

Jianguo Zheng , Nanshu Yu , Yongxiu Liu , Tao Song , Zhaoping Hu . Study on technological conditions of polymeric calcium magnesium phosphate fertilizer from phosphoric acid activated phosphate tailings[J]. Inorganic Chemicals Industry, 2020 , 52(2) : 43 -46 . DOI: 10.11962/1006-4990.2019-0117

References

[1] 周倩倩, 周克清 . 磷尾矿资源综合利用现状研究[J]. 化工矿物与加工, 2018,47(9):67-70.
[2] 孙娜, 尤彩霞, 胡亚伟 , 等. 磷尾矿氨循环法分离钙镁制取氢氧化镁碳酸钙的研究[J]. 无机盐工业, 2018,50(3):57-59.
[3] 文焱炳, 张钦, 顾春光 , 等. 中低品位磷矿前处理技术的研究进展[J]. 无机盐工业, 2016,48(7):7-9.
[4] 张苏江, 易锦俊, 孔令湖 , 等. 中国磷矿资源现状及磷矿国家级实物地质资料筛选[J]. 无机盐工业, 2016,48(2):1-5,17.
[5] 胡宏, 徐德龙, 段永华 , 等. 硫磷混酸分解高镁尾矿渣制取磷镁复合肥的工艺条件研究[J]. 无机盐工业, 2012,44(2):53-55,62.
[6] 张萍花, 燕云洁, 陈建钧 , 等. 高镁钙磷尾矿酸解制纳米级碳酸钙[J]. 无机盐工业, 2019,51(3):63-66.
[7] 赵博, 陈延信, 姚艳飞 . 白云石质磷尾矿悬浮态煅烧实验研究[J]. 无机盐工业, 2013,45(5):18-20.
[8] 解田; 胡宏; 高晓明 , 等. 利用萃余酸和高镁磷尾矿渣制备磷镁复合肥料的方法:中国,102161602A[P]. 2011 -08-24.
[9] 钟矿, 陈华, 梅军 , 等. 磷酸二氢铵-尿素缩聚法制备聚磷酸铵研究[J]. 无机盐工业, 2017,39(10):30-32.
[10] 刘宜娜, 杨荣杰, 李定华 , 等. 31P核磁共振波谱表征高聚合度聚磷酸铵及其链结构 [J]. 高等学校化学学报, 2018,39(9):2080-2088.
[11] 邹志量, 胡伟, 马新刚 , 等. 固体核磁共振法测定聚磷酸铵的平均聚合度[J]. 固体火箭技术, 2012,35(4):552-554,564.
[12] 王伯通, 刘永秀, 杨蕾 . 快速测定水溶性聚磷酸铵的聚合率[J]. 磷肥与复肥, 2017,32(1):40-41.
[13] 谢少兰 . 过磷酸钙中有效磷快速测定方法研究[J]. 无机盐工业, 2010,42(6):58-60.
[14] 朱瑞仪 . 聚丙烯酰胺絮凝剂的机理和分子设计研究[J]. 当代化工研究, 2018(12):120-121.
[15] 罗敬 . 利用核磁共振法分析几种含磷物质中磷的形态与含量[D]. 长沙:湖南师范大学, 2015.
Outlines

/