不同碳源对磷酸铁锂加工性能的影响探究
收稿日期: 2024-05-06
网络出版日期: 2025-04-21
基金资助
云南省科技厅科技计划项目(202103AA080009)
Investigation on effecte of different carbon source on processing performance of LiFePO4
Received date: 2024-05-06
Online published: 2025-04-21
磷酸铁锂浆料的黏度、固含量和稳定性是电池制作工艺中的重要参数,将直接影响涂布后电极极片的质量,最终影响电池的性能和寿命。使用高温固相法制备了一系列由不同碳源包覆的磷酸铁锂材料(LFP/C),并研究了其物理性能、电化学性能及加工性能。XRD结果显示,以3种有机物为碳源制备的LFP/C样品均呈现较高的结晶度,且都没有发现明显杂相;Raman结果表明,以蔗糖为碳源包覆改性的LFP/C-3样品的碳层石墨化程度最高;SEM和TEM结果证明,LFP/C-3样品的一次粒径最小,且颗粒分散性较好,其碳层厚度约为5 nm,且包覆均匀性良好。电化学表征结果显示,LFP/C-3样品在0.1C和1.0C倍率下的放电比容量分别能够达到154.6、130.9 mA·h/g,并且具备优异的倍率性能,在1.0C倍率下循环110次后容量保持率高达98.2%。但以葡萄糖作为碳源包覆改性的LFP/C-1样品具有最优的加工性能表现,在相同固含量条件下,其浆料的出料黏度为10 738 mPa·s,三段式触变测试结果显示,其黏度恢复率为97.86%。研究结果对工业界生产磷酸铁锂时的碳源选用起到了一定的借鉴意义。
王鹏 , 普志华 , 王天祥 , 林静宜 , 万远鑫 . 不同碳源对磷酸铁锂加工性能的影响探究[J]. 无机盐工业, 2025 , 57(4) : 60 -66 . DOI: 10.19964/j.issn.1006-4990.2024-0245
The viscosity,solid content,and stability of lithium iron phosphate slurry are important parameters in the battery manufacturing process,which will directly affect the quality of the coated electrode plates and ultimately affect the performance and lifespan of the battery.A series of lithium iron phosphate materials(LFP/C) coated with different carbon sources were prepared using high-temperature solid-phase method,and their physical,electrochemical and processing properties were studied.The XRD results showed that the LFP/C samples prepared with three organic compounds as carbon sources all exhibited high crystallinity,and no obvious impurities were found.The Raman results showed that the carbon layer graphitization degree of LFP/C-3 sample coated with sucrose as the carbon source was the highest.The SEM and TEM results demonstrated that the LFP/C-3 sample had the smallest primary particle size and good particle dispersion,with a carbon layer thickness of about 5 nm and good coating uniformity.The electrochemical characterization results showed that the discharge specific capacity of LFP/C-3 sample reached 154.6 and 130.9 mA·h/g at 0.1C and 1.0C rate,respectively,and had excellent rate performance.After 110 cycles at 1.0C rate,the capacity retention rate was as high as 98.2%.However,the LFP/C-1 sample coated with glucose as the carbon source showed the best processing performance.Under the same solid content conditions,the initial slurry viscosity was 10 738 mPa·s.The three-stage thixotropy test results showed a viscosity recovery rate of 97.86%.The results provided some reference significance for the selection of carbon sources in the industrial production of lithium iron phosphate.
[1] | 屈恋,李越珠,李铭雅,等.磷化铁对磷酸铁锂电化学性能的影响探究[J].无机盐工业,2023,55(12):88-94. |
QU Lian, LI Yuezhu, LI Mingya,et al.Study on effect of Fe2P on electrochemical performance of LiFePO4 [J].Inorganic Chemicals Industry,2023,55(12):88-94. | |
[2] | 王亿周,胡晓梅,王永详,等.镍铁锰酸钠层状氧化物的制备及性能研究[J].无机盐工业,2024,56(2):57-64. |
WANG Yizhou, HU Xiaomei, WANG Yongxiang,et al.Study on preparation of nickel-iron-manganate sodium layered oxides and their properties[J].Inorganic Chemicals Industry,2024,56(2):57-64. | |
[3] | CHEN Zhen, WANG Yan, WANG Miao,et al.Synergy and symbiosis analysis of capacity-contributing polypyrrole and carbon-coated lithium iron phosphate nanostructures for high-performance cathode materials[J].ACS Applied Nano Materials,2023,6(9):7465-7476. |
[4] | SHU Hongbo, WANG Xianyou, WU Qiang,et al.Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries[J].Journal of Power Sources,2013,237:149-155. |
[5] | DING Yu, PAN Pei, CHEN Lihui,et al.LiFePO4 composites decorated with nitrogen-doped carbon as superior cathode materials for lithium-ion batteries[J].Ionics,2017,23(12):3295-3302. |
[6] | 陈朝尧,裴丰,肖清艳,等.一步煅烧法制备碳/银共修饰LiFePO4正极材料[J].三峡大学学报(自然科学版),2023,45(5):153-160. |
CHEN Zhaoyao, PEI Feng, XIAO Qingyan,et al.Reparation of carbon/silver co-modified LiFePO4 cathode materials by one step calcination method[J].Journal of China Three Gorges University(Natural Sciences),2023,45(5):153-160. | |
[7] | 梁海,王琪,任斌.磷酸铁锂电极变速匀浆工艺研究[J].电源技术,2012,36(6):792-794. |
LIANG Hai, WANG Qi, REN Bin.A novel technology of shift uniformity in LiFePO4 slurry[J].Chinese Journal of Power Sources,2012,36(6):792-794. | |
[8] | LIU Yuanyuan, LIU Hao, AN Liwei,et al.Blended spherical lithium iron phosphate cathodes for high energy density lithium-ion batteries[J].Ionics,2019,25(1):61-69. |
[9] | 王昭沛,李意能,刘其峰,等.铈掺杂对磷酸铁锂加工性能的改善[J].广东化工,2023,50(15):94-97. |
WANG Zhaopei, LI Yineng, LIU Qifeng,et al.Improvement of processing properties for LiFePO4 by Ce doping[J].Guangdong Che- | |
Industry mical,2023,50(15):94-97. | |
[10] | 武鲁明,于海斌,王亚权.多孔碳材料的制备及其金属磷化物氧还原性能研究[J].无机盐工业,2023,55(4):104-110. |
WU Luming, YU Haibin, WANG Yaquan.Study on preparation of porous carbon materials and oxygen reduction properties of their metal phosphide[J].Inorganic Chemicals Industry,2023,55(4):104-110. | |
[11] | WANG Xufeng, FENG Zhijun, HOU Xiaolong,et al.Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries[J].Chemical Engineering Journal,2020,379:122371. |
[12] | ZHAO Jianwei, ZHAO Shixi, WU Xia,et al.Double role of silicon in improving the rate performance of LiFePO4 cathode materials[J].Journal of Alloys and Compounds,2017,699:849-855. |
[13] | HATZELL K B, BOOTA M, GOGOTSI Y.Materials for suspension(semi-solid) electrodes for energy and water technologies[J].Chemical Society Reviews,2015,44(23):8664-8687. |
[14] | 高娇阳,韩裕汴,牛海超,等.磷酸铁锂正极浆料提升固含量工艺优化研究[J].电池工业,2021,25(1):1-3,20. |
GAO Jiaoyang, HAN Yubian, NIU Haichao,et al.Investigation on the process optimization for improving solid content of LiFePO4 cathode slurry[J].Chinese Battery Industry,2021,25(1):1-3, 20. | |
[15] | 苏晓倩,杨芳凝,邱家栋,等.氟化碳正极浆料稳定性研究[J].电源技术,2021,45(11):1474-1477,1485. |
SU Xiaoqian, YANG Fangning, QIU Jiadong,et al.Study on the stability of fluorocarbon cathode slurry[J].Chinese Journal of Power Sources,2021,45(11):1474-1477,1485. |
/
〈 |
|
〉 |