无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

镍铁锰酸钠层状氧化物的制备及性能研究

  • 王亿周 ,
  • 胡晓梅 ,
  • 王永详 ,
  • 张维民
展开
  • 山东理工大学化学化工学院,山东 淄博 255000
王亿周(1998— ),男,硕士,研究方向为锂、钠离子电池;E-mail:wangyizhou2023@163.com
张维民(1977— ),男,博士,副教授,研究方向为化学和电化学工程;E-mail:wmzhang@sdut.edu.cn

收稿日期: 2023-03-01

  网络出版日期: 2024-02-06

基金资助

国家自然科学基金项目(21776175)

Study on preparation of nickel-iron-manganate sodium layered oxides and their properties

  • WANG Yizhou ,
  • HU Xiaomei ,
  • WANG Yongxiang ,
  • ZHANG Weimin
Expand
  • School of Chemistry and Chemical Engineering,Shandong University of Technology,Zibo 255000,China

Received date: 2023-03-01

  Online published: 2024-02-06

摘要

O3型NaNi0.4Fe0.2Mn0.4O2正极材料具有比容量高、高低温性能优良等特性,是一种具有实际应用价值的钠离子正极材料。通过共沉淀法制备了一系列正极材料,重点研究了pH对材料特征和性能的影响。借助扫描电子显微镜(SEM)、X射线衍射仪(XRD)、恒电流间歇滴定技术(GITT)及其他电化学测试技术对NaNi0.4Fe0.2Mn0.4O2材料的形貌、晶格参数、循环性能、倍率性能、钠离子扩散系数及赝电容贡献率等进行分析,发现随着pH的增大,样品粒径呈减小趋势,且过高的pH会造成样品粒径锐减,最佳合成pH为11。最佳pH条件下NaNi0.4Fe0.2Mn0.4O2材料的电化学测试结果表明,在30 ℃下电流密度为0.2C时,其放电比容量为142.3 mA·h/g,展现出优异的电化学性能。

本文引用格式

王亿周 , 胡晓梅 , 王永详 , 张维民 . 镍铁锰酸钠层状氧化物的制备及性能研究[J]. 无机盐工业, 2024 , 56(2) : 57 -64 . DOI: 10.19964/j.issn.1006-4990.2023-0104

Abstract

The O3-type NaNi0.4Fe0.2Mn0.4O2 cathode material has the characteristics of high specific capacity and excellent high/low-temperature performance,which is a kind of sodium-ion cathode material with practical application value.A series of cathode materials were prepared by co-precipitation method,and the effects of pH on the characteristics and performance of the materials were investigated.With the help of scanning electron microscope(SEM),X-ray diffractometer(XRD),constant current intermittent titration technique(GITT) and other electrochemical testing techniques,the morphology,lattice parameter,cycling performance,multiplicity performance,sodium-ion diffusion coefficient,and pseudocapacitance contribution of the NaNi0.4Fe0.2Mn0.4O2 materials were analyzed,and the samples were found to have a decreasing particle size with the increase of pH.It was found that the particle size of the samples decreased with the increase of pH,and excessive high pH would cause a sharp decrease in the particle size of the samples,and the optimal synthesis pH was 11.The electrochemical test results of the NaNi0.4Fe0.2Mn0.4O2 material at the optimized pH showed that the discharge specific capacity of NaNi0.4Fe0.2Mn0.4O2 material at 30 ℃ with a current density of 0.2C was 142.3 mA·h/g,which exhibited excellent electrochemical performance.

参考文献

1 GREY C P, HALL D S.Prospects for lithium-ion batteries and beyond—A 2030 vision[J].Nature Communications202011:6279.
2 YUAN Shuang, LAI Qinghao, DUAN Xiao,et al.Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors:A review[J].Journal of Energy Storage202361:106716.
3 WANG Yuesheng, XIAO Ruijuan, HU Yongsheng,et al.P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries[J].Nature Communications20156:6954.
4 HWANG J Y, MYUNG S T, SUN Y K.Sodium-ion batteries:Present and future[J].Chemical Society Reviews201746(12):3529-3614.
5 WEI Fanglin, ZHANG Qiaoping, ZHANG Peng,et al.Review—Research progress on layered transition metal oxide cathode materials for sodium ion batteries[J].Journal of the Electrochemical Society2021168(5):050524.
6 张亚锋,李宏伟,赵志坚.无人机用锂离子电池正极材料Li1.20Mn0.54Ni0.13Co0.13O2的Mo6+掺杂改性研究[J].无机盐工业202153(11):81-85.
  ZHANG Yafeng, LI Hongwei, ZHAO Zhijian.Study on Mo6+ doping into Li1.20Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries applied in unmanned aerial vehicles[J].Inorganic Che-Industry micals202153(11):81-85.
7 HU Hai, TANG Ke, CAO Shuang,et al.Synthesis and electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 microspheres as cathode materials for sodium-ion batteries[J].Journal of Alloys and Compounds2021859:157768.
8 张凯,江奥.球形LiMnPO4/C正极材料的喷雾干燥法制备及性能研究[J].无机盐工业202153(1):54-58.
  ZHANG Kai, JIANG Ao.Preparation and properties of spherical LiMnPO4/C cathode materials by spray drying method[J].Inorganic Chemicals Industry202153(1):54-58.
9 XIAO Lifen, JI Fangjie, ZHANG Jiexin,et al.Doping regulation in polyanionic compounds for advanced sodium-ion batteries[J].Small202319(1):e2205732.
10 HE Minglong, DAVIS R, CHARTOUNI D,et al.Assessment of the first commercial Prussian blue based sodium-ion battery[J].Journal of Power Sources2022548:232036.
11 WANG Wanlin, GANG Yong, HU Zhe,et al.Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J].Nature Communications202011:980.
12 ZUO Daxian, WANG Cuiping, WU Junwei,et al.Effect of co-precipitation pH on the electrochemical properties of Prussian blue electrode materials for sodium-ion batteries[J].Solid State Ionics2019336:120-128.
13 DELMAS C, FOUASSIER C, HAGENMULLER P.Structural classification and properties of the layered oxides[J].Physica B+C198099(1/2/3/4):81-85.
14 KIM D, LEE E, SLATER M,et al.Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J].Electrochemistry Communications201218:66-69.
15 WANG Hong, LIAO Xiaozhen, YANG Yang,et al.Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J].Journal of the Electrochemical Society2016163(3):A565-A570.
16 DING Feixiang, ZHAO Chenglong, ZHOU Dong,et al.A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries[J].Energy Storage Materials202030:420-430.
17 SUN Yang, WANG Hong, MENG Dechao,et al.Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J].ACS Applied Energy Materials20214(3):2061-2067.
18 SHEN Yabin, WU Yingqiang, XUE Hongjin,et al.Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes[J].ACS Applied Materials & Interfaces202113(1):717-726.
19 XIE Yingying, GAO Han, HARDER R,et al.Revealing the structural evolution and phase transformation of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material on sintering and cycling processes[J].ACS Applied Energy Materials20203(7):6107-6114.
20 ZHANG S, DENG C, FU B L,et al.Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method[J].Powder Technology2010198(3):373- 380.
21 TOBY B H, VON DREELE R B.GSAS-Ⅱ:The genesis of a modern open-source all purpose crystallography software package[J].Journal of Applied Crystallography201346(2):544-549.
22 TREACY M, NEWSAM J, DEEM M.A general recursion method for calculating diffracted intensities from crystals containing planar faults[J].Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences1991433(1889):499- 520.
23 QIAN Danna.Understanding the surface and interface properties of electrode materials in alkali-ion batteries:A Combination of experimental and computational studies[M].University of California,San Diego,2015.
24 TALYOSEF Y, MARKOVSKY B, LAVI R,et al.Comparing the behavior of nano-and microsized particles of LiMn1.5Ni0.5O4 spinel as cathode materials for Li-ion batteries[J].Journal of the Electrochemical Society2007154(7):A682.
25 TEO L P, BURAIDAH M H, AROF A K.Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques[J].Molecular Crystals and Liquid Crystals2019694(1):117-130.
26 DENG Jianqiu, LUO Wenbin, LU Xiao,et al.Sodium-ion batteries:High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J].Advanced Energy Materials20188(5):1701610.
27 郭凯强,车海英,张浩然,等.B2O3包覆NaNi1/3Fe1/3Mn1/3O2正极材料制备及其电化学性能[J].储能科学与技术202211(9):2980-2988.
  GUO Kaiqiang, CHE Haiying, ZHANG Haoran,et al.Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries[J].Energy Storage Science and Technology202211(9):2980-2988.
28 HOU Ying, JIN Junteng, HUO Chuanrui,et al.New insights into the critical role of inactive element substitution in improving the rate performance of sodium oxide cathode material[J].Energy Storage Materials202356:87-95.
文章导航

/