铁铬液流电解液中三价铬的测定方法
收稿日期: 2023-04-17
网络出版日期: 2024-01-18
Determination method of trivalent chromium in iron chromium flow electrolytes
Received date: 2023-04-17
Online published: 2024-01-18
在HG/T 4311—2012《工业氯化铬》滴定法测定三价铬含量的基础上,通过多步氧化法,将铁铬混合物中Cr3+完全氧化成Cr6+,实现了较大浓度范围内 Cr3+含量的精确稳定测试,解决了铁离子干扰;同时,对影响测定结果准确度的主要条件(蒸馏水添加量、氢氧化钠溶液添加量和盐酸溶液添加量)进行了实验验证对比分析,优化了实验条件。测定步骤主要为:先在酸性环境中用过量的氯酸钠溶液把Fe2+氧化成Fe3+,然后加氢氧化钠溶液在碱性环境下用双氧水初步把Cr3+氧化成Cr6+。此时由于部分被铁络合物包裹的Cr3+未被氧化,所以加盐酸溶液调节到合适的pH后,使被络合物包裹的Cr3+完全释出,再用双氧水完全氧化成Cr6+,然后添加硫酸溶液和磷酸掩蔽铁离子,用硫酸亚铁铵标准溶液滴定。结果表明,测定的Cr3+含量相对标准偏差为0.12%~0.51%,加标回收率为95.0%~99.2%,且测定结果与分光光度法测定结果基本一致,满足铁铬液流电池电解液中三价铬含量的测定要求。
华蔓 , 车莹 , 杨合雄 , 温启浩 . 铁铬液流电解液中三价铬的测定方法[J]. 无机盐工业, 2024 , 56(1) : 121 -125 . DOI: 10.19964/j.issn.1006-4990.2023-0217
The determination of trivalent chromium content was based on the titration method of “HG/T 4311—2012 Industrial Chromium Chloride”.By using a multi-step oxidation method,Cr3+ in the iron chromium mixture was completely oxidized to Cr6+,achieving accurate and stable testing of Cr3+ content within a large concentration range,and solving the interference of iron ions.At the same time,the main conditions that affected the accuracy of the measurement results,including the amount of distilled water,the amount of sodium hydroxide solution and the amount of hydrochloric acid,were experimentally verified and compared,and the experimental conditions were optimized.The main measurement steps of this method were as follows:firstly,in an acidic environment,Fe2+ was oxidized to Fe3+ with an excess sodium chlorate solution,then a sodium hydroxide solution was added,and in alkaline environment,Cr3+ was preliminarily oxidized to Cr6+ with hydrogen peroxide.At this point,as some of the Cr3+ encapsulated by the iron complex was not oxidized,a hydrochloric acid solution was added to adjust to the appropriate pH value to completely release the Cr3+ encapsulated by the complex.Then,hydrogen peroxide was used to completely oxidize it to Cr6+.Then,sulfuric acid solution and phosphoric acid were added to mask the iron ions,and titrated with ammonium ferrous sulfate standard solution.The results showed that the relative standard deviation of Cr3+ determined by this method was 0.12%~0.51%,and the recovery rate of the added standard was 95.0%~99.2%.The determination results were basically consistent with those determined by spectrophotometry,meeting the requirements for the determination of trivalent chromium content in the electrolyte of iron chromium flow batteries.
Key words: Fe-Cr mixture; trivalent chromium; RSD
1 | 王绍亮.铁铬液流电池电解液优化研究[D].合肥:中国科学技术大学,2021. |
WANG Shaoliang.Optimization of electrolyte for iron-chromium flow battery[D].Hefei:University of Science and Technology of China,2021. | |
2 | 计东东,姜奇,蒋龙,等.大容量长时储能技术及其在油气行业的应用前景[J].石油管材与仪器,2023,9(1):6-15. |
JI Dongdong, JIANG Qi, JIANG Long,et al.High-capacity long-duration energy storage technologies and their application potential in oil and gas industry[J].Petroleum Tubular Goods & Instruments,2023,9(1):6-15. | |
3 | SUN Chuanyu, ZHANG Huan.Review of the development of first-generation redox flow batteries:Iron-chromium system[J].ChemSusChem,2022,15(1):e202101798. |
4 | WAN C T C, RODBY K E, PERRY M L,et al.Hydrogen evolution mitigation in iron-chromium redox flow batteries via electrochemical purification of the electrolyte[J].Journal of Power Sources,2023,554:232248. |
5 | XIE Chenye, YAN Hui, SONG Yuanfang,et al.Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries[J].Journal of Power Sources,2023,564:232860. |
6 | 徐泉,曾建华,牛迎春,等.一种铁铬液流电池的电解液的制备方法及所得电解液:中国,114551956B[P].2022-09-23. |
7 | 白礼太,马顺友,刘玉洪,等.铬铁酸溶制备三价铬盐的方法:中国,110963532B[P].2023-01-24. |
8 | 刘继军,林红梅,胡国荣,等.利用铬铁合金生产铬盐的新工艺研究[J].无机盐工业,2021,53(6):156-159. |
LIU Jijun, LIN Hongmei, HU Guorong,et al.Study on new process of producing chromium salt with ferrochrome alloy[J].Inorganic Chemicals Industry,2021,53(6):156-159. | |
9 | 赵静,谭亮,冀恬,等.GF-AAS与ICP-MS测定水中总铬含量的方法比对及其不确定度评定[J].净水技术,2023,42(3):181-188. |
ZHAO Jing, TAN Liang, JI Tian,et al.Comparison of determination methods between GF-AAS and ICP-MS for total chromium content in water and the uncertainty evaluation[J].Water Purification Technology,2023,42(3):181-188. | |
10 | 李静,王记鲁,刘跃,等.火焰原子吸收光谱法测定电镀废水中的铬[J].电镀与涂饰,2022,41(23):1712-1716. |
LI Jing, WANG Jilu, LIU Yue,et al.Determination of chromium in electroplating wastewater by flame atomic absorption spectrometry[J].Electroplating & Finishing,2022,41(23):1712-1716. | |
11 | 史鑫,付学会,张慧,等.不同分析方法测定磷矿石中铬含量的比较[J].磷肥与复肥,2021,36(6):33-35. |
SHI Xin, FU Xuehui, ZHANG Hui,et al.Comparison of different analysis methods for determination of chromium in phosphate rock[J].Phosphate & Compound Fertilizer,2021,36(6):33- 35. | |
12 | 李云红,林雪梅,张伟亚.二苯碳酰二肼分光光度法测定实验废水中六价铬含量的研究[J].环境科学与管理,2022,47(8):111-115. |
LI Yunhong, LIN Xuemei, ZHANG Weiya.Determination of Cr(Ⅵ) by spectrophotometry with diphenyl carbamide in experimental wastewater[J].Environmental Science and Management,2022,47(8):111-115. | |
13 | 许涯平,陈涛,孙肖媛,等.二苯基碳酰二肼分光光度法测 |
定硅铁中铬含量方法改进[J].云南冶金,2020,49(1):72- 74. | |
XU Yaping, CHEN Tao, SUN Xiaoyuan,et al.Improvement of determination on chromium content in silicon iron by diphenyl carbazide spectrophotometric method[J].Yunnan Metallurgy,2020,49(1):72-74. | |
14 | OHIRA S I, NAKAMURA K, CHIBA M,et al.Matrix isolation with an ion transfer device for interference-free simultaneous spectrophotometric determinations of hexavalent and trivalent chromium in a flow-based system[J].Talanta,2017,164:445- 450. |
/
〈 |
|
〉 |