S-1分子筛羟基窝锚定钴用于丙烷脱氢制丙烯
收稿日期: 2022-12-05
网络出版日期: 2023-05-15
基金资助
国家重点研发计划项目(2022YFE0116000);国家自然科学基金(22202193);中国博士后基金(2019M661147);中国科学院青年创新促进会(2021182);大连化物所创新基金(DICP I202217)
Co anchored on silanol nests of S-1 zeolite for propane dehydrogenation to propylene
Received date: 2022-12-05
Online published: 2023-05-15
以全硅MFI分子筛(S-1)为载体,采用简单的浸渍法制备了不同钴(Co)含量的Co/S-1催化剂并应用于丙烷脱氢反应。利用X射线衍射(XRD)、氮气吸附-脱附、傅里叶变换红外光谱(FT-IR)等技术对Co/S-1进行表征。结果表明,Co负载在S-1载体上并与S-1的Si—OH反应生成单位点Co物种和超小的Co纳米团簇,这些物种是丙烷脱氢的主要活性中心。Co的负载量对丙烷脱氢影响很大,当负载量较低时,活性Co物种较少,丙烷脱氢性能较差;当负载量较高时,Co物种会团聚成大颗粒不利于丙烷脱氢反应。通过优化制备条件,发现当Co负载量为1%(质量分数)时,Co/S-1的丙烷脱氢性能最优,循环使用5次后丙烷转化率、丙烯选择性和丙烯产率均未出现明显的下降。
贾育红 , 胡忠攀 , 王坤院 , 韩晶峰 , 魏迎旭 , 刘中民 . S-1分子筛羟基窝锚定钴用于丙烷脱氢制丙烯[J]. 无机盐工业, 2023 , 55(5) : 121 -127 . DOI: 10.19964/j.issn.1006-4990.2022-0714
Co/S-1 catalysts with different cobalt(Co) contents were prepared by a simple impregnation method using pure silica MFI zeolite(S-1) as carrier and applied to the dehydrogenation of propane.Co/S-1 was characterized by X-ray diffraction(XRD),nitrogen adsorption desorption,and Fourier transform infrared spectroscopy(FT-IR).The results showed that Co was loaded on the S-1 carrier and reacted with the Si—OH of S-1 to form unit point Co species and ultra small Co nanoclusters,which were the main active centers for propane dehydrogenation.The loading amount of Co had a significant impact on propane dehydrogenation.When the loading amount was low,there were fewer active Co species and propane dehydrogenation performance was poor.When the loading amount was high,the Co species would agglomerate into large particles,which was not conducive to the propane dehydrogenation reaction.By optimizing the preparation conditions,it was found that when the Co loading amount was 1%(mass fraction),the propane dehydrogenation performance of Co/S-1 was optimal.After 5 cycles of recycling,there was no significant decrease in propane conversion,propylene selectivity,and propylene yield.
1 | 常小虎,赵毅,周帅,等.Fe改性Silicalite-1分子筛铂基催化剂的制备及其丙烷脱氢的催化性能[J].合成化学,2022,30(7):574-582. |
CHANG Xiaohu, ZHAO Yi, ZHOU Shuai,et al.Fe modified silicalite-1 supported Pt-based catalyst for propane dehydrogenati-on[J].Chinese Journal of Synthetic Chemistry,2022,30(7):574-582 | |
2 | GOMEZ E, YAN Binhang, KATTEL S,et al.Carbon dioxide reduction in tandem with light-alkane dehydrogenation[J].Nature Reviews Chemistry,2019,3(11):638-649. |
3 | SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E,et al.Catalytic dehydrogenation of light alkanes on metals and metal oxides[J].Chemical Reviews,2014,114(20):10613-10653. |
4 | MCFARLAND E.Unconventional chemistry for unconventional natural gas[J].Science,2012,338(6105):340-342. |
5 | 周微,于海斌,马新宾.Cr/SSZ-13催化二氧化碳氧化乙烷脱氢反应的研究[J].无机盐工业,2021,53(12):43-48. |
ZHOU Wei, YU Haibin, MA Xinbin.Oxidative dehydrogenation of ethane with carbon dioxide to ethylene over Cr/SSZ-13 catalyst[J].Inorganic Chemicals Industry,2021,53(12):43-48. | |
6 | YANG Zhiyuan, LI Huan, ZHOU Hang,et al.Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation[J].Journal of the American Chemical Society,2020,142(38):16429-16436. |
7 | 李晓云,胡远明,蔡奇,等.铂系低碳烷烃脱氢催化剂研究进展[J].无机盐工业,2021,53(5):1-6. |
LI Xiaoyun, HU Yuanming, CAI Qi,et al.Research progress of Pt-based catalysts for dehydrogenation of low-carbon alkanes[J].Inorganic Chemicals Industry,2021,53(5):1-6. | |
8 | 郭秋双,蔡奇,孙彦民,等.低碳烷烃脱氢催化剂的研究进展[J].无机盐工业,2016,48(8):11-15. |
GUO Qiushuang, CAI Qi, SUN Yanmin,et al.Research progress of low carbon alkane dehydrogenation catalyst[J].Inorganic Chemicals Industry,2016,48(8):11-15. | |
9 | HU Zhongpan, YANG Dandan, WANG Zheng,et al.State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J].Chinese Journal of Catalysis,2019,40(9):1233-1254. |
10 | MARCINKOWSKI M D, DARBY M T, LIU Jilei,et al.Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C—H activation[J].Nature Chemistry,2018,10(3):325-332. |
11 | LIU Lichen, LOPEZ-HARO M, LOPES C W,et al.Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J].Nature Materials,2019,18(8):866-873. |
12 | CHAI Yuchao, WU Guangjun, LIU Xiaoyan,et al.Acetylene-selective hydrogenation catalyzed by cationic nickel confined in zeolite[J].Journal of the American Chemical Society,2019, 141(25):9920-9927. |
13 | GORDON C P, ENGLER H, TRAGL A S,et al.Efficient epoxidation over dinuclear sites in titanium silicalite-1[J].Nature,2020,586(7831):708-713. |
14 | HU Zhongpan, HAN Jingfeng, WEI Yingxu,et al.Dynamic evolution of zeolite framework and metal-zeolite interface[J].ACS Catalysis,2022,12(9):5060-5076. |
15 | WEI Donghui, ZHU Xinju, NIU Junlong,et al.High-valent-cobalt-catalyzed C—H functionalization based on concerted metalation-deprotonation and single-electron-transfer mechanisms[J].ChemCatChem,2016,8(7):1242-1263. |
16 | HU B, BEAN G A, SCHWEITZER N M,et al.Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox me-chanism [J].Journal of Catalysis,2015,322:24–37. |
17 | ESTES D P, SIDDIQI G, ALLOUCHE F,et al.C—H activation on Co,O sites:Isolated surface sites versus molecular analogs[J].Journal of the American Chemical Society,2016,138(45):14987-14997. |
18 | DAI Yihu, GU Jingjing, TIAN Suyang,et al. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation[J].Journal of Catalysis,2020,381:482-492. |
19 | DAI Yihu, WU Yue, DAI Hua,et al.Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation[J].Journal of Catalysis,2021,395:105-116. |
20 | CHEN Chong, ZHANG Shoumin, WANG Zheng,et al.Ultrasmall Co confined in the silanols of dealuminated beta zeolite:A highly active and selective catalyst for direct dehydrogenation of propane to propylene[J].Journal of Catalysis,2020,383:77-87. |
21 | WANG Yansu, SUO Yujun, REN Jintao,et al.Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation[J].Journal of Colloid and Interface Science,2021,594:113-121. |
22 | GU Dong, JIA Chunjiang, WEIDENTHALER C,et al.Highly ordered mesoporous cobalt-containing oxides:Structure,catalytic properties,and active sites in oxidation of carbon monoxide[J].Journal of the American Chemical Society,2015,137(35):11407-11418. |
23 | LI Xiuyi, WANG Pengzhao, WANG Haoren,et al.Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation[J].Applied Surface Science,2018,441:688-693. |
24 | HU Bo, KIM W G, SULMONETTI T P,et al.A mesoporous cobalt aluminate spinel catalyst for nonoxidative propane dehydrogenation[J].ChemCatChem,2017,9(17):3330-3337. |
25 | HU Zhongpan, QIN Gangqiang, HAN Jingfeng,et al.Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenati-on[J].Journal of the American Chemical Society,2022,144(27):12127-12137. |
26 | 陈利利,邱安定.ZSM-5分子筛掺杂双稀土金属用于低碳烷烃脱氢反应[J].现代化工,2018,38(4):155-159. |
CHEN Lili, QIU Anding.ZSM-5 molecular sieve doped with double rare earth metals for dehydrogenation of low carbon alkanes[J].Modern Chemical Industry,2018,38(4):155-159. | |
27 | KRUK M, JARONIEC M.Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J].Chemistry of Materials,2001,13(10):3169-3183. |
28 | HU Zhongpan, ZHAO Hui, GAO Zemin,et al.High-surface-area activated red mud supported Co3O4 catalysts for efficient catalytic oxidation of CO[J].RSC Advances,2016,6(97):94748-94755. |
29 | OTTO T, ZONES S I, HONG Yongchun,et al.Synthesis of highly dispersed cobalt oxide clusters encapsulated within LTA zeolit- es[J].Journal of Catalysis,2017,356:173-185. |
/
〈 |
|
〉 |