氮化SBA-15负载高分散过渡金属用于丙烷高效直接脱氢
收稿日期: 2022-05-23
网络出版日期: 2023-02-16
Nitriding SBA-15 loaded highly dispersed transition metals for efficient direct dehydrogenation of propane
Received date: 2022-05-23
Online published: 2023-02-16
以氮化法修饰的介孔二氧化硅(SBA-15)为载体,采用浸渍法制备了不同过渡金属(钴、镍、铁、铜)脱氢催化剂。通过X射线衍射光谱和N2吸附-脱附分析表明氮化后的载体仍能保持良好的介孔结构;通过扫描电子显微镜分析表明金属处于高度分散的良好状态;通过程序升温还原和X射线光电子能谱分析表明氮化SBA-15改变了金属的电子结构,增强了载体与金属之间的相互作用力。采用定量浸渍法制备了金属负载量为1%(质量分数)的脱氢催化剂,并进行了性能评价。结果表明,丙烷脱氢催化剂活性顺序由高到低依次为Co-SBA-15N900-1%、Fe-SBA-15N900-1%、Cu-SBA-15N900-1%、Ni-SBA-15N900-1%,其中Co-SBA-15N900-1%催化剂的丙烷转化率为33%,丙烯选择性为88%。
李海涛 , 赵银峰 . 氮化SBA-15负载高分散过渡金属用于丙烷高效直接脱氢[J]. 无机盐工业, 2023 , 55(2) : 141 -148 . DOI: 10.19964/j.issn.1006-4990.2022-0316
Dehydrogenation catalysts with different transition metals of Co,Ni,Fe,Cu were prepared by impregnation method with SBA-15 modified by nitridation method as carrier.The mesoporous structure of the support after nitridation was confirmed by X-ray diffraction(XRD) and N2 adsorption desorption analysis.Scanning electron microscopy(SEM) confirmed that the metal was in a good state of high dispersion.Temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS) proved that nitriding SBA-15 changed the electronic structure of the metal,and the interaction between the carrier and the metal was significantly enhanced.Metal-loaded samples with a content of 1% were prepared by quantitative impregnation method,and their properties were evaluated.The experimental results showed that the order of catalytic PDH activity of different metals for propane dehydrogenation was Co-SBA-15N900-1%,Fe-SBA-15N900-1%,Cu-SBA-15N900-1%,Ni-SBA-15N900-1%.The Co-SBA-15N900-1% exhibited a propane conversion of 33% and a propylene selectivity of 88%,indicating its promising utilization in industry.
| 1 | 杜凯敏,范杰.丙烷氧化脱氢制丙烯研究进展[J].化工进展,2019,38(6):2697-2706. |
| 1 | DU Kaimin, FAN Jie.Research progress on oxidative dehydrogenation of propane to propene[J].Chemical Industry and Engineering Progress,2019,38(6):2697-2706. |
| 2 | 杨文建,孟广莹,李晓云,等.球形氧化铝的制备及其在丙烷脱氢催化剂中的应用[J].无机盐工业,2020,52(6):87-91. |
| 2 | YANG Wenjian, MENG Guangying, LI Xiaoyun,et al.Preparation of spherical alumina and its application in PDH[J].Inorganic Chemicals Industry,2020,52(6):87-91. |
| 3 | SHI Lei, DENG Gaoming, LI Wencui,et al.Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J].Angewandte Chemie,2015,54(47):13994-13998. |
| 4 | 李超,王红秋.美国页岩气开发对化工市场的影响[J].中外能源,2015,20(2):18-22. |
| 4 | LI Chao, WANG Hongqiu.The influence of US shale gas development on the chemical market[J].Sino-Global Energy,2015,20(2):18-22. |
| 5 | 江丽,刘春艳,王红娟,等.国内外页岩气开发环境管理现状及对比[J].天然气工业,2021,41(12):146-155. |
| 5 | JIANG Li, LIU Chunyan, WANG Hongjuan,et al.Domestic and foreign environmental management of shale gas development:Status and comparison[J].Natural Gas Industry,2021,41(12):146-155. |
| 6 | SOEDER D J.The successful development of gas and oil resources from shales in North America[J].Journal of Petroleum Science and Engineering,2018,163:399-420. |
| 7 | LIAN Zan, SI Chaowei,JAN F,et al.Coke deposition on Pt-based catalysts in propane direct dehydrogenation:Kinetics,suppression,and elimination[J].ACS Catalysis,2021,11(15):9279-9292. |
| 8 | HU Zhongpan, YANG Dandan, WANG Zheng,et al.State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J].Chinese Journal of Catalysis,2019,40(9):1233-1254. |
| 9 | SHAO Huaiqi, HE Qihui, WANG Delong,et al.The active sites and catalytic properties of CrO x /Zn-Al2O3 catalysts for propane dehydrogenation[J].Applied Catalysis A:General,2022,637.Doi:10.1016/j.apcata.2022.118610 . |
| 10 | BENI′TEZ J J, DIAZ A, LAURENT Y,et al.Characterisation,surface hydrolysis and nitrogen stability in aluminophosphate oxynitride(AlPON) catalysts[J].Applied Catalysis A:General,1999,176(2):177-187. |
| 11 | XIA Hongde, WEI Kai.Equivalent characteristic spectrum analysis in TG-MS system[J].Thermochimica Acta,2015,602:15- 21. |
| 12 | 赵银峰,刘中民,于政锡,等.一种质谱定量在线分析气态物质的方法[P].中国,114624314A,2020-12-15. |
| 13 | 王硕,白丽明.钇沉积的二氧化钛-SBA-15纳米催化剂制备及其应用[J].无机盐工业,2019,51(3):77-81. |
| 13 | WANG Shuo, BAI Liming.Preparation and application of yttriumdeposited TiO2-SBA-15 nano-catalyst[J].Inorganic Chemicals Industry,2019,51(3):77-81. |
| 14 | 邵艳秋,张宇婷,姜振双,等.水解剂氟化铵对Fe-SBA-15结构及催化性能的影响[J].无机盐工业,2019,51(9):97-101. |
| 14 | SHAO Yanqiu, ZHANG Yuting, JIANG Zhenshuang,et al.Effects of hydrolysate NH4F on structure and catalytic properties of Fe-SBA-15[J].Inorganic Chemicals Industry,2019,51(9):97-101. |
| 15 | BIAN Zhoufeng, DEWANGAN N, WANG Zhigang,et al.Mesoporous-silica-stabilized cobalt(II) oxide nanoclusters for propane dehydrogenation[J].ACS Applied Nano Materials,2021,4(2):1112-1125. |
| 16 | 蔺丹丹.SBA-15分子筛负载钴催化剂催化乙醇水蒸气重整反应性能的研究[D].太原:太原理工大学,2016. |
| 16 | LIN Dandan.The study on ethanol steam reforming over molecular sieve SBA-15 supported cobalt catalyst[D].Taiyuan:Taiyuan University of Technology,2016. |
| 17 | HE Sufang, ZHANG Lei, HE Suyun,et al.Ni/SiO2 catalyst prepared with nickel nitrate precursor for combination of CO2 reforming and partial oxidation of methane:Characterization and deactivation mechanism investigation[J].Journal of Nanomaterials,2015,2015.Doi:10.1155/2015/659402 . |
| 18 | MILE B, STIRLING D, ZAMMITT M A,et al.TPR studies of the effects of preparation conditions on supported nickel catalysts[J].Journal of Molecular Catalysis,1990,62(2):179-198. |
| 19 | ZHANG Shoumin, HUANG Weiping, QIU Xiaohang,et al.Comparative study on catalytic properties for low-temperature CO oxidation of Cu/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation[J].Catalysis Letters,2002,80(1/2):41-46. |
| 20 | LUO Mengfei.TPR and TPD studies of CuOCeO2 catalysts for low temperature CO oxidation[J].Applied Catalysis A:General,1997,162(1/2):121-131. |
| 21 | 冉瑶,许彪,丁森,等.不同分散度Co/Al2O3催化丙烷脱氢反 |
| 21 | 应性能[J].天然气化工—C1化学与化工,2021,46(6):33- 39. |
| 21 | RAN Yao, XU Biao, DING Sen,et al.Catalytic performance of Co/Al2O3 with different dispersion for propane dehydrogenation[J].Natural Gas Chemical Industry,2021,46(6):33-39. |
/
| 〈 |
|
〉 |