蛇纹石与绿矾耦合提取富镁溶液 矿化二氧化碳并回收镍
收稿日期: 2022-05-06
网络出版日期: 2023-01-17
基金资助
国家自然科学基金(NSFC51774205)
Serpentine coupled with copperas to enrich magnesium solution for simultaneous CO2 mineralization and nickel recovery
Received date: 2022-05-06
Online published: 2023-01-17
蛇纹石与绿矾耦合提取镁用于矿化二氧化碳,并富集回收蛇纹石中的镍,这为处理蛇纹石和绿矾提供了一条新的路径。为得到富镁溶液,同时从溶液中分离镍,以蛇纹石与绿矾混合焙烧-浸出后得到的溶液为研究对象,采用水解沉淀法除铁,二乙基二硫代氨基甲酸钠(DDTC)络合法分离镍镁,得到镍的产物和富镁溶液并将其用于二氧化碳矿化。结果表明,该方法能够高效地去除杂质、分离镍镁。在30 ℃、pH为5.0条件下,铁的去除率达97.36%,而镍、镁的损失率较低。在最佳络合条件下,镍的络合率达到99.50%,而镁的损失率仅为3.03%。此外,对络合机理进行了研究,DDTC中的特征官能团是—SH,络合之后镍和铁分别以Ni[(C2H5)2NCS2]2,Fe[(C2H5)2NCS2]3的形式存在,而镁不会被络合。富镁溶液在80 ℃下矿化率达92.63%。每1 000 kg蛇纹石可固定227.38 kg的二氧化碳,同时回收33.69 kg的DDTC-Ni(含7.09 kg氧化镍)。
翁定崧 , 王正豪 , 陈良 , 殷仁涛 , 肖海兵 , 刘维燥 , 梁斌 , 罗冬梅 . 蛇纹石与绿矾耦合提取富镁溶液 矿化二氧化碳并回收镍[J]. 无机盐工业, 2023 , 55(1) : 93 -99 . DOI: 10.19964/j.issn.1006-4990.2022-0139
Serpentine coupled with copperas to extract and enrich Mg for CO2 mineralization and Ni recovery from serpentine provides a novel route for processing serpentine and copperas.In order to obtain Mg-rich solution and simultaneously separate Ni from solution,the leaching solution which containing Ni,Fe,Mg was investigated in this study.The impurities were removed by hydrolyzing precipitation,and Ni was separated from Mg by DDTC(C5H10NNaS2?3H2O) complexing.Furthermore,the produced nickel oxide,and the Mg-rich solution were used for CO2 mineralization.The results indicated that this route could efficiently remove Fe and separate Ni.The results showed that the precipitation ratio of Fe reached 97.36%,but the loss ratio of Ni and Mg was low at 30 ℃,pH of 5.0.Besides,the precipitation ratio of Ni was 99.50%,while the loss ratio of Mg was 3.03% at optimal complexation conditions.The complexation mechanism of the complexation was also analyzed.The characteristic functional group of DDTC was—SH.The Ni and Fe existed in the form of Ni[(C2H5)2NCS2]2,Fe[(C2H5)2NCS2]3 after complexing,respectively.However,Mg wasn′t complexed.Finally,the carbonation conversion of Mg2+ was 92.63% at 80 ℃.The mass of 227.38 kg CO2 could be sequestrated by per 1000 kg serpentine and simultaneously recover 33.69 kg DDTC-Ni(contain 7.09 kg NiO).
Key words: serpentine; DDTC; complexing; CO2 mineralization
| 1 | 张本曰, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J].矿产综合利用, 2020(4):13-20. |
| 1 | ZHANG Benyue, LIU Dan, GUO Rui, et al. Comprehensive utilization status of nickel-containing serpentine[J].Multipurpose Utilization of Mineral Resources, 2020(4):13-20. |
| 2 | 肖景波, 夏娇彬, 陈居玲. 由蛇纹石制备高纯氧化铁的研究[J].无机盐工业, 2014, 46(11):30-34. |
| 2 | XIAO Jingbo, XIA Jiaobin, CHEN Juling. Preparation of high purity ferric oxide from serpentine[J].Inorganic Chemicals Industry, 2014, 46(11):30-34. |
| 3 | 刘文刚, 李志明, 吴冠达, 等. 高温焙烧对含蛇纹石尾矿亚甲基蓝吸附性能的影响[J].矿产保护与利用, 2021, 41(3):89-93. |
| 3 | LIU Wengang, LI Zhiming, WU Guanda, et al. Effect of high temperature roasting on methylene blue adsorption of serpentine tailings[J].Conservation and Utilization of Mineral Resources, 2021, 41(3):89-93. |
| 4 | FAGERLUND J, NDUAGU E, ROM?O I, et al. A stepwise process for carbon dioxide sequestration using magnesium silicates[J].Frontiers of Chemical Engineering in China, 2010, 4(2):133- 141. |
| 5 | FAGERLUND J, NDUAGU E, ROM?O I, et al. CO2 fixation using magnesium silicate minerals part 1:Process description and performance[J].Energy, 2012, 41(1):184-191. |
| 6 | 张克宇, 吴鉴, 周朝金, 等. 结晶法提纯钛白副产硫酸亚铁[J].有色金属工程, 2017, 7(2):10-15. |
| 6 | ZHANG Keyu, WU Jian, ZHOU Chaojin, et al. Purification of ferrous sulfate byproduct from titanium dioxide by crystallization process[J].Nonferrous Metals Engineering, 2017, 7(2):10-15. |
| 7 | 唐舒扬, 郭宇峰, 郑富强, 等. 钛白粉的制备方法现状及展望[J].无机盐工业, 2022, 54(7):27-34. |
| 7 | TANG Shuyang, GUO Yufeng, ZHENG Fuqiang, et al. Present situation and prospects of preparation methods of titanium dioxide[J].Inorganic Chemicals Industry, 2022, 54(7):27-34. |
| 8 | WANG Lin, LIU Weizao, HU Jingpeng, et al. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3 [J].Chinese Journal of Chemical Engineering, 2018, 26(3):583-592. |
| 9 | LIU Weizao, YIN Shu, LUO Dongmei, et al. Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag[J].Journal of Alloys and Compounds, 2019, 774:1151-1159. |
| 10 | XU Xingliang, LIU Weizao, CHU Guanrun, et al. Energy-efficient mineral carbonation of CaSO4 derived from wollastonite via a roasting-leaching route[J].Hydrometallurgy, 2019, 184:151- 161. |
| 11 | YIN Shu, ALDAHRI T, ROHANI S, et al. Insights into the roasting kinetics and mechanism of blast furnace slag with ammonium sulfate for CO2 mineralization[J].Industrial & Engineering Che- mistry Research, 2019, 58(31):14026-14036. |
| 12 | LI Jinhui, CHEN Zhifeng, SHEN Bangpo, et al. The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate[J].Journal of Cleaner Production, 2017, 140:1148-1155. |
| 13 | RIBEIRO P P M, NEUMANN R, SANTOS I D D, et al. Nickel carriers in laterite ores and their influence on the mechanism of nickel extraction by sulfation-roasting-leaching process[J].Minerals Engineering, 2019, 131:90-97. |
| 14 | CUI Fuhui, MU Wenning, WANG Shuai, et al. Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions,microtopography and kinetics[J].Minerals Engineering, 2018, 123:104-116. |
| 15 | CHEN Yangfan, TENG Wenxin, FENG Xin, et al. Efficient extraction and separation of zinc and iron from electric arc furnace dust by roasting with FeSO4·7H2O followed by water leaching[J].Separation and Purification Technology, 2022, 281.Doi:10.1016/j.seppur.2021.119936. |
| 16 | ZHANG Xiufeng, CHEN Zhichao, ROHANI S, et al. Simultaneous extraction of lithium,rubidium,cesium and potassium from lepidolite via roasting with iron(Ⅱ) sulfate followed by water leaching[J].Hydrometallurgy, 2022, 208.Doi:10.1016/j.hydro-met.2022.105820. |
| 17 | 牟文宁, 崔富晖, 黄志鹏, 等. 红土镍矿硫酸焙烧-浸出溶液中铁、镍回收的研究[J].矿产综合利用, 2018(1):22-25. |
| 17 | MU Wenning, CUI Fuhui, HUANG Zhipeng, et al. Research on the recovery of iron and nickel from leaching liquid of laterite nickel ore treated by sulfuric acid roasting-water leaching[J].Multipurpose Utilization of Mineral Resources, 2018(1):22-25. |
| 18 | 严苹方. 巯基捕集剂及自制磁性巯基胺型树脂对微量络合铜镍的去除特性研究[D].广州:广东工业大学, 2017. |
| 18 | YAN Pingfang. Study on the characteristics of trace complex copper and nickel removal by the thiol metal capture agent and the self-made magnetic mercapto amine resin[D].Guangzhou:Gu-angdong University of Technology, 2017. |
| 19 | XIAO Xiao, YE Maoyou, YAN Pingfang, et al. Disodium N,N-bis-(dithiocarboxy)ethanediamine:Synthesis,performance,and mechanism of action toward trace ethylenediaminetetraacetic acid copper(Ⅱ)[J].Environmental Science and Pollution Research International, 2016, 23(19):19696-19706. |
| 20 | YANG Xin, PENG Xianjia, KONG Linghao, et al. Removal of Ni(Ⅱ) from strongly acidic wastewater by chelating precipitation and recovery of NiO from the precipitates[J].Journal of Environmental Sciences, 2021, 104:365-375. |
| 21 | 严苹方, 孙水裕, 叶茂友, 等. 巯基重金属捕集剂脱除电镀废水中低浓度Ni的效能及机理研究[J].环境科学学报, 2015, 35(9):2833-2839. |
| 21 | YAN Pingfang, SUN Shuiyu, YE Maoyou, et al. Research on the efficiency and mechanism of low-concentration Ni removal from electroplating wastewater by the heavy metal capturing agent with thiol[J].Acta Scientiae Circumstantiae, 2015, 35(9):2833-2839. |
/
| 〈 |
|
〉 |