无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
锂资源开发与利用

膜技术在盐湖提锂中的进展和展望

  • 林钰青 ,
  • 张以任 ,
  • 邱宇隆 ,
  • 张嘉雨 ,
  • 于建国
展开
  • 华东理工大学国家盐湖资源综合利用工程技术研究中心,钾锂战略资源国际联合实验室,上海 200237
林钰青(1987— ),男,博士,特聘研究员,博导,主要研究方向为新型膜材料制备与膜过程设计;E-mail:linyuqing@ecust.edu.cn

收稿日期: 2022-10-12

  网络出版日期: 2023-01-17

基金资助

国家自然科学联合基金重点项目(U20A20142);上海市“科技创新 行动计划”国际科技合作项目(22520710800)

Progress and prospect of membrane technology in lithium extraction from salt lake brine

  • Yuqing LIN ,
  • Yiren ZHANG ,
  • Yulong QIU ,
  • Jiayu ZHANG ,
  • Jianguo YU
Expand
  • National Engineering Research Center for Integrated Utilization of Salt Lake Resources,Joint Int′l Lab for Potassium and Lithium Strategic Resources,East China University of Science and Technology,Shanghai 200237,China

Received date: 2022-10-12

  Online published: 2023-01-17

摘要

随着新能源产业的快速发展,卤水锂资源开发已成为世界范围战略性新兴产业发展的重要内涵。膜分离技术,因其优异的一/二价离子分离性能、良好的环保和经济性,已成为中国高镁锂比盐湖卤水提锂的主流工艺。归纳分析了膜分离技术在卤水体系中的分离机理、研究进展及未来发展方向。新型高性能锂离子分离膜的持续研究发展,必将加速提升中国卤水锂资源的开发水平。

本文引用格式

林钰青 , 张以任 , 邱宇隆 , 张嘉雨 , 于建国 . 膜技术在盐湖提锂中的进展和展望[J]. 无机盐工业, 2023 , 55(1) : 33 -45 . DOI: 10.19964/j.issn.1006-4990.2022-0606

Abstract

Under the rapid development of the new energy industry,the development of lithium brine resources has become an important connotation of the development of strategic emerging industries worldwide.Membrane separation technology has become the mainstream process for lithium extraction from salt lake brine with high magnesium lithium ratio in China,due to its excellent separation performance of monovalent/divalent ions,good environmental protection and economy.The separation mechanism,research progress and future development of membrane separation technology in brine system were summarized and analyzed.The continuous research and development of new high-performance lithium ion separation membranes would certainly accelerate the development of lithium resources in brine in China.

参考文献

1 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J].化工学报, 2018, 69(1):141-155.
1 LIU Dongfan, SUN Shuying, YU Jianguo. Research and development on technique of lithium recovery from salt lake brine[J].CIESC Journal, 2018, 69(1):141-155.
2 中华人民共和国国家发展和改革委员会发展规划司. 全国矿产资源规划 (2016—2020年)[EB/OL].(2017-05-11).
3 中华人民共和国自然资源部. 中国矿产资源报告(2019)[R].北京:地质出版社, 2019.
3 Ministry of Natural Resources,PRC. China Mineral Resources(2019)[R].Beijing:Geological Publishing House, 2019.
4 SUN Nan, DOU Pengjia, ZHAI Wentao, et al. Polyethylene separator supported thin-film composite forward osmosis membranes for concentrating lithium enriched brine[J].Water Research, 2022, 216.Doi:10.1016/j.watres.2022.118297.
5 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].(2021-03-13).
6 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J].化工学报, 2021, 72(6):2905-2921, 3433.
6 WANG Qi, ZHAO Youjing, LIU Yang, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J].CIESC Journal, 2021, 72(6):2905-2921, 3433.
7 尹红军, 邓天龙, 李栋婵. 盐湖卤水资源锂镁分离提取的研究进展[J].无机盐工业, 2009, 41(5):1-4.
7 YIN Hongjun, DENG Tianlong, LI Dongchan. Progress on lithium and magnesium separation and recovery from the salt lake brin-es[J].Inorganic Chemicals Industry, 2009, 41(5):1-4.
8 马丽, 孟永涛, 毕秋艳, 等. 盐湖高锂卤水中硫酸根的分离与锂的迁移[J].无机盐工业, 2021, 53(6):150-155.
8 MA Li, MENG Yongtao, BI Qiuyan, et al. Separation of sulfate and migration of lithium in high lithium brine of salt lake[J].Inorganic Chemicals Industry, 2021, 53(6):150-155.
9 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J].化学进展, 2017, 29(7):796-808.
9 ZHAO Xu, ZHANG Qi, WU Haihong, et al. Extraction of lithium from salt lake brine[J].Progress in Chemistry, 2017, 29(7):796- 808.
10 LIU Gui, ZHAO Zhongwei, GHAHREMAN A. Novel approaches for lithium extraction from salt-lake brines:A review[J].Hydrometallurgy, 2019, 187:81-100.
11 YANG Zhao, FANG Wangxi, WANG Zhenyi, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J].Journal of Membrane Science, 2021, 620.Doi:10.1016/j.memsci.2020.118862.
12 XU Yong, CHEN Qingbai, WANG Jianyou, et al. Fractionation of monovalent ions from seawater brine via softening nanofiltration and selective electrodialysis:Which is better?[J].Desalination, 2022, 533.Doi:10.1016/j.desal.2022.115717.
13 RAZMJOU A, ASADNIA M, HOSSEINI E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J].Nature Communications, 2019, 10.Doi:10.1038/s41467-019-13648-7.
14 LIN Yuqing, YAO Xuesong, SHEN Qin, et al. Zwitterionic copolymer-regulated interfacial polymerization for highly permselective nanofiltration membrane[J].Nano Letters, 2021, 21(15):6525-6532.
15 LIU Suwei, GANTI-AGRAWAL S, KETEN S, et al. Molecular insights into charged nanofiltration membranes:Structure,water transport,and water diffusion[J].Journal of Membrane Science, 2022, 644.Doi:10.1016/j.memsci.2021.120057.
16 QIU Zelin, FANG Lifeng, SHEN Yujie, et al. Ionic dendrimer based polyamide membranes for ion separation[J].ACS Nano, 2021, 15(4):7522-7535.
17 YANG Gang, SHI Hong, LIU Wenqiang, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J].Chinese Journal of Chemical Engineering, 2011, 19(4):586-591.
18 SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration(NF) and low pressure reverse osmosis(LPRO)[J].Desalination, 2013, 317:184-192.
19 SUN Shuying, CAI Lijuan, NIE Xiaoyao, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J].Journal of Water Process Engineering, 2015, 7:210- 217.
20 ZHAO Youjing, WANG Huaiyou, LI Yan, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J].Desalination, 2020, 493.Doi:10.1016/j.desal.2020.114620.
21 XU Fang, DAI Liheng, WU Yulin, et al. Li+/Mg2+ separation by membrane separation:The role of the compensatory effect[J].Journal of Membrane Science, 2021, 636.Doi:10.1016/j.memsci.2021.119542.
22 LI Yan, ZHAO Youjing, WANG Huaiyou, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J].Desalination, 2019, 468.Doi:10.1016/j.desal.2019.114081.
23 LI Xianhui, MO Yinghui, QING Weihua, et al. Membrane-based technologies for lithium recovery from water lithium resources:A review[J].Journal of Membrane Science, 2019, 591.Doi:10.1016/j.memsci.2019.117317.
24 LI Yunhao, WANG Shuhao, WU Wenyuan, et al. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation[J].Journal of Membrane Science, 2022, 659.Doi:10.1016/j.memsci.2022.120809.
25 TANG Mingjian, LIU Meiling, LI Lu, et al. Solvation-amination-synergy that neutralizes interfacially polymerized membranes for ultrahigh selective nanofiltration[J].AIChE Journal, 2022, 68(6).Doi:10.1002/aic.17602.
26 XU Yang, PENG Huawen, LUO Hao, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J].Desalination, 2022, 526.Doi:10.1016/j.desal.2021.115519.
27 SONG Qiangqiang, LIN Yuqing, UEDA T, et al. Mechanism insights into the role of the support mineralization layer toward ultrathin polyamide nanofilms for ultrafast molecular separation[J].Journal of Materials Chemistry A, 2021, 9(46):26159-26171.
28 LI Lianchao, WANG Baoguo, TAN Huimin, et al. A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane[J].Journal of Membrane Science, 2006, 269(1/2):84-93.
29 CHIANG Y C, HSUB Y Z, RUAAN R C, et al. Nanofiltration membranes synthesized from hyperbranched polyethyleneimi-ne[J].Journal of Membrane Science, 2009, 326(1):19-26.
30 LASISI K H, YAO Weihao, XUE Qiang, et al. High performance polyamine-based acid-resistant nanofiltration membranes catalyzed with 1,4-benzenecarboxylic acid in interfacial cross-linking polymerization process[J].Journal of Membrane Science, 2021, 640.Doi:10.1016/j.memsci.2021.119833.
31 WANG Zhen, YOU Xinda, YANG Chao, et al. Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal[J].Journal of Membrane Science, 2022, 642.Doi:10.1016/j.memsci.2021.119971.
32 LI Xianhui, ZHANG Chunjin, ZHANG Shuning, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J].Desalination, 2015, 369:26-36.
33 ZHANG Haizhen, XU Zhenliang, DING Hao, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+ [J].Desalination, 2017, 420:158-166.
34 XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J].Desalination, 2019, 449:57-68.
35 BI Qiuyan, ZHANG Chao, LIU Jiandong, et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties[J].Separation and Purification Technology, 2021, 257.Doi:10.1016/j.seppur.2020.117959.
36 GONZALES R R, SASAKI Y, ISTIROKHATUN T, et al. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes[J].Separation and Purification Technology, 2022, 297. Doi:10.1016/j.seppur.2022.121534.
37 WU Huanhuan, LIN Yakai, FENG Wenyan, et al. A novel nanofiltration membrane with[MimAP][Tf2N]ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J].Journal of Membrane Science, 2020, 603.Doi:10.1016/j.memsci.2020.117997.
38 LI Wei, SHI Chang, ZHOU Ayang, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J].Separation and Purification Technology, 2017, 186:233-242.
39 LU Dan, MA Tao, LIN Saisai, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+[J].Journal of Membrane Science, 2021, 635.Doi:10.1016/j.memsci.2021.119504.
40 PENG Huawen, ZHAO Qiang. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J].Advanced Functional Materials, 2021, 31(14).Doi:10.1002/adfm.202009430.
41 ZHANG Xin, ZHENG Junfeng, JIN Pengrui, et al. A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions[J].Journal of Hazardous Materials, 2022, 435.Doi:10.1016/j.jhazmat.2022.129010.
42 YAN Junying, WANG Huangying, FU Rong, et al. Ion exchange membranes for acid recovery:Diffusion Dialysis(DD) or Selective Electrodialysis(SED)?[J].Desalination, 2022, 531.Doi:10.1016/j.desal.2022.115690.
43 NIE Xiaoyao, SUN Shuying, SUN Ze, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J].Desalination, 2017, 403:128-135.
44 NIE Xiaoyao, SUN Shuying, SONG Xingfu, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J].Journal of Membrane Science, 2017, 530:185-191.
45 JI Zhiyong, CHEN Qingbai, YUAN Junsheng, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J].Separation and Purification Technology, 2017, 172:168-177.
46 JIANG Chenxiao, CHEN Binglun, XU Ziang, et al. Ion-“distillation” for isolating lithium from lake brine[J].AIChE Journal, 2022, 68(6).Doi:10.1002/aic.17710.
47 许振良, 张海珍, 丁浩. 面向盐湖卤水和海水锂资源膜法提锂过程现状与进展 [C]//中国膜工业协会,中南大学.第五届全国膜分离技术在冶金工业中应用研讨会,2016.
48 吴静, 任秀莲, 魏琦峰. 盐湖卤水中锂的分离提取研究进展[J].无机盐工业, 2020, 52(12):1-6.
48 WU Jing, REN Xiulian, WEI Qifeng. Research progress on separation and extraction of lithium from salt-lake brine[J].Inorganic Chemicals Industry, 2020, 52(12):1-6.
49 YING Jiadi, LIN Yuqing, ZHANG Yiren, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J].Chemical Engineering Journal, 2022, 446.Doi:10.1016/j.cej.2022.137076.
50 YING Jiadi, LIN Yuqing, ZHANG Yiren, et al. Mechanistic insights into the degradation of monovalent selective ion exchange membrane towards long-term application of real salt lake brin-es[J].Journal of Membrane Science, 2022, 652.Doi:10.1016/j.memsci.2022.120446.
51 ZHANG Yiren, LIN Yuqing, YING Jiadi, et al. Highly efficient monovalent ion transport enabled by ionic crosslinking-induced nanochannels[J].AIChE Journal, 2022, 68(11).Doi:10.1002/aic.17825.
52 ZHOU Zongyao, SHINDE D B, GUO Dong, et al. Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport[J].Advanced Functional Materials, 2022, 32(6).Doi:10.1002/adfm.202108672.
53 ONOUE Y, MIZUTANI Y, YAMANE R, et al. Selectivity of cation exchange membrane for NaCl-CaCl2 system[J].Journal of the Electrochemical Society of Japan, 1961, 29:E155-E158.
54 SHEHZAD M A, WANG Yaoming, YASMIN A, et al. Biomimetic nanocones that enable high ion permselectivity[J].Angewandte Chemie International Edition, 2019, 58(36):12646-12654.
55 ZHANG Dongyu, JIANG Chenxiao, LI Yuanyuan, et al. Electro-driven in situ construction of functional layer using amphoteric molecule:The role of tryptophan in ion sieving[J].ACS Applied Materials & Interfaces, 2019, 11(40):36626-36637.
56 LU Jun, ZHANG Huacheng, HOU Jue, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks[J].Nature Materials, 2020, 19(7):767-774.
57 ZHANG Chengyi, MU Yingxin, ZHANG Wen, et al. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation[J].Journal of Membrane Science, 2020, 596.Doi:10.1016/j.memsci.2019.117724.
58 SHEHZAD M A, YASMIN A, GE Xiaolin, et al. A review of nanostructured ion-exchange membranes[J].Advanced Materials Tec- hnologies, 2021, 6(10).Doi:10.1002/admt.202001171.
59 GUO D Y, YING D Y, MAO D Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J].Angewandte Chemie International Edition, 2016, 55(48):15120-15124.
60 SHENG Fangmeng, WU Bin, LI Xingya, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J].Advanced Materials, 2021, 33(44).Doi:10.1002/adma.202104404.
61 XU Tingting, WU Bin, HOU Linxiao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J].Journal of the American Chemical Society, 2022, 144(23):10220-10229.
62 IRFAN M, WANG Yaoming, XU Tongwen. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J].Che-mical Engineering Journal, 2020, 383.Doi:10.1016/j.cej.2019.123171.
63 IRFAN M, XU Tingting, GE Liang, et al. Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity:Investigating the effect of functional groups and operating parameters[J].Journal of Membrane Science, 2019, 588.Doi:10.1016/j.memsci.2019.117211.
64 李新望, 谷晓娟, 左大海, 等. 陶瓷超滤膜用于盐湖卤水提锂合格液的中试研究[J].无机盐工业, 2020, 52(4):61-64.
64 LI Xinwang, GU Xiaojuan, ZUO Dahai, et al. Pilot study of ceramic ultrafiltration membrane for qualified lithium-extraction solution from salt lake brine[J].Inorganic Chemicals Industry, 2020, 52(4):61-64.
65 李晓光, 丁书强, 卓锦德, 等. 溶胶-凝胶法制备陶瓷膜研究进展[J].无机盐工业, 2019, 51(1):7-11.
65 LI Xiaoguang, DING Shuqiang, Jinder JOW, et al. Preparation and development of ceramic membrane prepared by sol-gel process[J].Inorganic Chemicals Industry, 2019, 51(1):7-11.
66 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J].化工学报, 2017, 68(5):1899-1905.
66 MENG Qingwei, ZHANG Feng, CHEN Lu, et al. Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J].CIESC Journal, 2017, 68(5):1899-1905.
67 张理元, 沈如倩, 阳金菊, 等. 锂离子筛研究进展[J].无机盐工业, 2022, 54(5):28-37.
67 ZHANG Liyuan, SHEN Ruqian, YANG Jinju, et al. Research progress on lithium ion sieves[J].Inorganic Chemicals Industry, 2022, 54(5):28-37.
68 HOSHINO T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor[J].Desalination, 2015, 359:59-63.
69 LI Zhen, LI Chunyang, LIU Xiaowei, et al. Continuous electrical pumping membrane process for seawater lithium mining[J].Energy & Environmental Science, 2021, 14(5):3152-3159.
70 SASAKI K, HIRAKA R, TAKAHASHI H, et al. Energy balance of lithium recovery by electrodialysis using La0.57Li0.29TiO3 electrolyte[J].Fusion Engineering and Design, 2021, 170.Doi:10.1016/j.fusengdes.2021.112500.
71 MORITA K, MATSUMOTO T, HOSHINO T. Efficient lithium extraction via electrodialysis using acid-processed lithium-adsorbing lithium lanthanum titanate[J].Desalination, 2022, 543.Doi:10.1016/j.desal.2022.116117.
72 YU Weisheng, ZHANG Kaiyu, ZHANG Jianjun, et al. Efficient lamellar two-dimensional proton channels derived from dipole interactions in a polyelectrolyte membrane[J].AIChE Journal, 2022, 68(8).Doi:10.1002/aic.17731.
73 LIMJUCO L A, NISOLA G M, TORREJOS R E C, et al. Aerosol cross-linked crown ether diols melded with poly(vinyl alcohol) as specialized microfibrous Li+ adsorbents[J].ACS Applied Materials & Interfaces, 2017, 9(49):42862-42874.
74 ZHU Quanji, MA Xiaohua, PEI Hongchang, et al. A highly-efficient lithium adsorptive separation membrane derived from a polyimide-containing dibenzo-14-crown-4 moiety[J].Separation and Purification Technology, 2020, 247.Doi:10.1016/j.seppur.2020.116940.
75 LU Jian, QIN Yingying, ZHANG Qi, et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone[J].Applied Surface Science, 2018, 427:931-941.
76 WARNOCK S J, SUJANANI R, ZOFCHAK E S, et al. Engineering Li/Na selectivity in 12-Crown-4-functionalized polymer membranes[J].PNAS, 2021, 118(37).Doi:10.1073/pnas.2022197118.
77 ZOFCHAK E S, ZHANG Zidan, WHEATLE B K, et al. Origins of lithium/sodium reverse permeability selectivity in 12-crown-4-functionalized polymer membranes[J].ACS Macro Letters, 2021, 10(9):1167-1173.
78 侯淑华, 王雪, 董雪, 等. 抗污染高分子分离膜研究进展[J].应用化学, 2017, 34(5):502-511.
78 HOU Shuhua, WANG Xue, DONG Xue, et al. Research progress in antifouling polymeric separation membranes[J].Chinese Journal of Applied Chemistry, 2017, 34(5):502-511.
79 任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J].化工学报, 2020, 71(2):475-486.
79 REN Liuyi, ZHAO Song, WANG Zhi, et al. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J].CIESC Journal, 2020, 71(2):475-486.
80 GUO Jie, YANG Qiaoli, MENG Qingwei, et al. Membrane surface functionalization with imidazole derivatives to benefit dye removal and fouling resistance in forward osmosis[J].ACS Applied Materials & Interfaces, 2021, 13(5):6710-6719.
81 DIZON G V, LEE Yusheng, VENAULT A, et al. Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process[J].Journal of Membrane Science, 2021, 618.Doi:10.1016/j.memsci.2020.118753.
82 YANG Zhe, TAKAGI R, ZHANG Xinyu, et al. Engineering a dual-functional sulfonated polyelectrolyte-silver nanoparticle complex on a polyamide reverse osmosis membrane for robust biofouling mitigation[J].Journal of Membrane Science, 2021, 618.Doi:10.1016/j.memsci.2020.118757.
文章导航

/