无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

富锂锰基正极材料反应机理研究进展

  • 杨凤玉 ,
  • 董华 ,
  • 陈勃涛
展开
  • 1.天津国安盟固利新材料科技股份有限公司,天津 301811
    2.天津市固态电池关键材料与技术 企业重点实验室
    3.天津荣盛盟固利新能源科技有限公司
杨凤玉(1988— ),女,硕士,主要研究方向为锂离子电池和富锂锰基正极材料制备及工艺研究;E-mail:yangfengyu@htmgl.com.cn

收稿日期: 2022-04-12

  网络出版日期: 2022-12-19

Research progress of reaction mechanism of lithium-rich manganese-based cathode materials

  • Fengyu YANG ,
  • Hua DONG ,
  • Botao CHEN
Expand
  • 1. Tianjin Guoan Mengguli New Materials Science Technology Co. , Ltd. , Tianjin 301811, China
    2. Tianjin Enterprise Key Laboratory of Key Materials and Technology for Solid State Batteries
    3. Tianjin Risesun Mengguli New Energy Science Technology Co. , Ltd.

Received date: 2022-04-12

  Online published: 2022-12-19

摘要

富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)具有比容量高(≥250 mA·h/g)和成本低的显著优势,近年来受到学术界和工业界的广泛关注。但是,关于材料的结构和反应机理等问题一直存在着一些争议。对富锂锰基材料的结构和反应机理进行了总结和评述。对材料的结构总结了单相固溶体、两相混和物、局部阳离子有序排列3种观点,通过分析发现富锂锰基材料的结构与元素的比例、制备条件等密切相关。反应机理重点阐述了材料的Li+/H+交换理论、阴离子氧氧化还原机理(阴离子电荷补偿理论)和Mn4+/Mn7+反应机理假说,并对阴离子氧氧化还原反应过程的中间产物是否存在O—O二聚体或者氧空穴进行了讨论分析。最后,对这类材料未来的产品化应用方向提出了展望,混掺使用可能是富锂锰基材料产业化的切入点,高性价比的富锂锰基材料的产业化应用将再一次推动锂离子电池发展迈向一个新台阶。

本文引用格式

杨凤玉 , 董华 , 陈勃涛 . 富锂锰基正极材料反应机理研究进展[J]. 无机盐工业, 2022 , 54(12) : 19 -27 . DOI: 10.19964/j.issn.1006-4990.2022-0056

Abstract

The lithium-rich manganese-based cathode material of xLi2MnO3·(1-x)LiMO2(M=Ni,Co or Mn) has a high specific capacity(≥250 mA·h/g) and the significant advantages of low cost.In recent years,it has also received widespread attention from academia and industry.There are still some controversies about material structure and reaction mechanism.The structure and reaction mechanism of lithium-rich manganese-based materials were summarized and reviewed.Three viewpoints of materials structure were summarized:single-phase solid solution,two-phase mixture,and local cation ordered arrangement.It was concluded that the structure of lithium-rich manganese-based materials was closely related to the element ratio,preparation conditions and so on.The reaction mechanism was focused on the Li+/H+ exchange theory,anionic oxygen redox(anion charge compensation theory) and Mn4+/Mn7+ reaction mechanism hypothesis.The existence of O—O dimer or oxygen hole in the intermediate products of the anionic oxygen redox reaction process was discussed and analyzed.Finally,some thoughts on the future product application direction of this kind of materials were put forward.Mixing with other cathode materials may open the door of industrialization of lithium-rich manganese-based materials,and the industrial application of cost-effective lithium-rich manganese-based materials will promote the development of lithium-ion batteries to a new level.

参考文献

1 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2):448-478.
1 LI Wenjun, XU Hangyu, YANG Qi, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2):448-478.
2 况新亮, 刘垂祥, 熊朋. 锂离子电池产业分析及市场展望[J]. 无机盐工业, 2022, 54(8):12-19, 32.
2 KUANG Xinliang, LIU Chuixiang, XIONG Peng. Industry analysis and market prospect of lithium ion battery[J]. Inorganic Chemicals Industry, 2022, 54(8):12-19, 32.
3 李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3):394-403.
3 LI Yu, ZHAO Huichun, BAI Ying, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3):394-403.
4 严武渭, 柳永宁, 崇少坤, 等. 高能量密度锂离子电池用富锂正极材料[J]. 化学进展, 2017, 29(S2):198-209.
4 YAN Wuwei, LIU Yongning, CHONG Shaokun, et al. Lithium-rich cathode materials for high energy-density lithium-ion batteries[J]. Progress in Chemistry, 2017, 29(S2):198-209.
5 ZHAO Shuoqing, YAN Kang, ZHANG Jinqiang, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angewandte Chemie:International Ed.in English, 2021, 60(5):2208-2220.
6 CROY J R, GUTIERREZ A, HE Meinan, et al. Development of manganese-rich cathodes as alternatives to nickel-rich chemistri-es[J]. Journal of Power Sources, 2019, 434.Doi:10.1016/j.jpowsour.2019.226706 .
7 EUM D, KIM B, KIM S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes[J]. Nature Materials, 2020, 19(4):419-427.
8 CROY J R, GARCIA J C, IDDIR H, et al. Harbinger of hysteresis in lithium-rich oxides:Anionic activity or defect chemistry of cation migration[J]. Journal of Power Sources, 2020, 471.Doi:10.1016/j.jpowsour.2020.228335 .
9 ASSAT G, GLAZIER S L, DELACOURT C, et al. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry[J]. Nature Energy, 2019, 4(8):647-656.
10 王兆翔, 马君, 高玉瑞, 等. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11):1591-1614.
10 WANG Zhaoxiang, MA Jun, GAO Yurui, et al. Stabilizing structure and performances of lithium rich layer-structured oxide cathode materials[J]. Progress in Chemistry, 2019, 31(11):1591-1614.
11 熊凡, 王同振, 高强, 等. Li2MnO3复合LiNi0.8Co0.1Mn0.1O2材料制备及电化学性能研究[J]. 无机盐工业, 2020, 52(1):68-72.
11 XIONG Fan, WANG Tongzhen, GAO Qiang, et al. Study on synthesis and electrochemical performance of Li2MnO3-LiNi0.8Co0.1Mn0.1O2 composite cathodes materials[J]. Inorganic Chemicals Industry, 2020, 52(1):68-72.
12 ZUO Wenhua, LUO Mingzeng, LIU Xiangsi, et al. Li-rich cathodes for rechargeable Li-based batteries:Reaction mechanisms and advanced characterization techniques[J]. Energy & Environmental Science, 2020, 13(12):4450-4497.
13 JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3 component in‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochemistry Communications, 2004, 6(10):1085-1091.
14 LU Zhonghua, DAHN J R. Structure and electrochemistry of layered Li[Cr x Li(1/3– x/3)Mn(2/3–2 x/3)]O2 [J]. Journal of the Electrochemical Society, 2002, 149(11):A1454-A1459.
15 JARVIS K A, DENG Zengqiang, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries:Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16):3614-3621.
16 GENEVOIS C, KOGA H, CROGUENNEC L, et al. Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction[J]. The Journal of Physical Chemistry C, 2015, 119(1):75-83.
17 KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M‘O3·(1-x)LiMn0.5Ni0.5O2 elect-rodes for lithium batteries (M‘=Ti,Mn,Zr;0≤x?0.3)[J]. Chemistry of Materials, 2004, 16(10):1996-2006.
18 YU Xiqian, Yingchun LYU, GU Lin, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5).Doi:10.1002/aenm.201300950 .
19 MENG Y S, CEDER G, GREY C P, et al. Cation ordering in layered O3 Li[Ni x Li1/3-2 x/3Mn2/3- x/3]O2(0≤x≤1/2) compounds[J]. Chemistry of Materials, 2005, 17(9):2386-2394.
20 MOHANTY D, LI Jianlin, ABRAHAM D P, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries:Origin of the tetrahedral cations for spinel conversion[J]. Chemistry of Materials, 2014, 26(21):6272-6280.
21 MCCALLA E, ROWE A W, SHUNMUGASUNDARAM R, et al. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J]. Chemistry of Materials, 2013, 25(6):989-999.
22 MCCALLA E, LOWARTZ C M, BROWN C R, et al. Formation of layered-layered composites in the Li-Co-Mn oxide pseudoternary system during slow cooling[J]. Chemistry of Materials, 2013, 25(6):912-918.
23 LI Jing, SHUNMUGASUNDARAM R, DOIG R, et al. In situ X-ray diffraction study of layered Li-Ni-Mn-Co oxides:Effect of particle size and structural stability of core-shell materials[J]. Chemistry of Materials, 2016, 28(1):162-171.
24 CROY J R, KANG S H, BALASUBRAMANIAN M, et al. Li2MnO3-based composite cathodes for lithium batteries:A novel synthesis approach and new structures[J]. Electrochemistry Communications, 2011, 13(10):1063-1066.
25 ROSSOUW M, THACKERAY M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Materials Research Bulletin, 1991, 26(6):463-473.
26 LU Zhonghua, MACNEIL D D, DAHN J R. Layered cathode materials Li[Ni x Li(1/3-2 x/3)Mn(2/3- x/3)]O2 for lithiumion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(11):A191-A194.
27 ZUO Y, LI B, JIANG N, et al. A high-capacity O2- Type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16).Doi:10.1002/adma.201707255 .
28 OHZUKU T, NAGAYAMA M, TSUJI K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries:Toward rechargeable capacity more than 300 mA·h·g–1[J]. Journal of Materials Chemistry, 2011, 21(27):10179-10188.
29 MUHAMMAD S, KIM H, KIM Y, et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries[J]. Nano Energy, 2016, 21: 172-184.
30 XU Jing, SUN Meiling, QIAO Ruimin, et al. Elucidating anionic oxygen activity in lithium-rich layered oxides[J]. Nature Communications, 2018, 9.Doi:10.1038/s41467-018-03403-9 .
31 ROBERTSON A D, BRUCE P G. The origin of electrochemical activity in Li2MnO3[J]. Chemical Communications, 2002(23):2790-2791.
32 AYDINOL M K, KOHAN A F, CEDER G, et al. Ab initiostudy of lithium intercalation in metal oxides and metal dichalcogenid-es[J]. Physical Review B, 1997, 56(3):1354-1365.
33 KOYAMA Y, TANAKA I, NAGAO M, et al. First-principles study on lithium removal from Li2MnO3[J]. Journal of Power Sources, 2009, 189(1):798-801.
34 SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials, 2013, 12(9):827-835.
35 KOGA H, CROGUENNEC L, MéNéTRIER M, et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2[J]. Journal of the Electrochemical Society, 2013, 160(6):A786-A792.
36 GRIMAUD A, HONG W T, SHAO-HORN Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2):121-126.
37 LU Zhonghua, DAHN J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of the Electrochemical Society, 2002, 149(7):A815-A822.
38 LU Zhonghua, BEAULIEU L Y, DONABERGER R A, et al. Synthesis,structure,and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of the Electrochemical Society, 2002, 149(6):A778-A791.
39 ARMSTRONG A R, HOLZAPFEL M, NOVáK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26):8694-8698.
40 THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn,Ni,Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125.
41 YU D Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3[J]. Journal of the Electrochemical Society, 2009, 156(6):A417-A424.
42 SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7):692-697.
43 MCCALLA E, ABAKUMOV A M, SAUBANèRE M, et al. Visualization of O—O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267):1516-1521.
44 ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteri-es[J]. Nature Energy, 2018, 3(5):373-386.
45 ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8.Doi:10.1038/s41467-017-02291-9 .
46 LUO Kun, ROBERTS M R, HAO Rong, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7):684-691.
47 GENT W E, LIM K, LIANG Yufeng, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8.Doi:10.1038/s41467-017-02041-x .
48 CHEN H, ISLAM M S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization[J]. Chemistry of Materials, 2016, 28(18):6656-6663.
49 RADIN M D, VINCKEVICIUTE J, SESHADRI R, et al. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials[J]. Nature Energy, 2019, 4(8):639-646.
50 周伟, 陈彦逍, 郭孝东, 等. 铝掺杂富锂锰基正极材料Li1.2Ni0.2Mn0.6O2的研究[J]. 无机盐工业, 2021, 53(6):128-133.
50 ZHOU Wei, CHEN Yanxiao, GUO Xiaodong, et al. Study on aluminum-doped lithium-rich manganese-based cathode materials of Li1.2Ni0.2Mn0.6O2[J]. Inorganic Chemicals Industry, 2021, 53(6):128-133.
51 PHATTHARASUPAKUN N, GENG Chenxi, JOHNSON M B, et al. Impact of Cr doping on the voltage fade of Li-rich Mn-rich Li1.11Ni0.33Mn0.56O2 and Li1.2Ni0.2Mn0.6O2 positive electrode materials[J]. Journal of the Electrochemical Society, 2020, 167(16).Doi:10.1149/1945-7111/abd44e .
52 张亚锋, 李宏伟, 赵志坚. 无人机用锂离子电池正极材料Li1.20Mn0.54Ni0.13Co0.13O2的Mo6+掺杂改性研究[J]. 无机盐工业, 2021, 53(11):81-85.
52 ZHANG Yafeng, LI Hongwei, ZHAO Zhijian. Study on Mo6+ doping into Li1.20Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries applied in unmanned aerial vehicles[J]. Inorganic Che-micals Industry, 2021, 53(11):81-85.
53 LIU Shiqi, WANG Boya, ZHANG Xu, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5):1511-1527.
54 HUA Weibo, CHEN Mingzhe, SCHWARZ B, et al. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides[J]. Advanced Energy Materials, 2019, 9(8).Doi:10.1002/aenm.201803094 .
55 LEI Yike, NI Jie, HU Zijun, et al. Surface modification of Li-rich Mn-based layered oxide cathodes:Challenges,materials,methods,and characterization[J]. Advanced Energy Materials, 2020, 10(41).Doi:10.1002/aenm.202002506 .
56 ZHAO Enyue, ZHANG Minghao, WANG Xuelong, et al. Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides[J]. Energy Storage Materials, 2020, 24: 384-393.
57 KIM S, AYKOL M, HEGDE V I, et al. Material design of high-capacity Li-rich layered-oxide electrodes:Li2MnO3 and beyond[J]. Energy & Environmental Science, 2017, 10(10):2201-2211.
文章导航

/