收稿日期: 2022-03-15
网络出版日期: 2022-12-19
基金资助
中国海洋石油集团有限公司项目(CNOOC-KJ 135 ZDXM 32 TJY 005-2018)
Study on synthesis,modification and olefin removal performance of boron-doped Y zeolite
Received date: 2022-03-15
Online published: 2022-12-19
采用水热合成法制备了硼掺杂Y分子筛(B-Y分子筛),并对其进行铵交换和水热处理,得到了改性B-Y分子筛(B-USY分子筛)。利用多种表征技术对B-Y分子筛及B-USY分子筛的组成、孔道结构、酸性质进行了表征,并将改性后的B-USY分子筛应用于重整生成油脱烯烃反应。结果表明:引入硼以后,Y分子筛的晶胞参数减小、相对结晶度降低、骨架稳定性下降;硼的引入促使改性过程中脱铝深度增加,并且形成连通介孔。相比于未掺杂硼的Y分子筛改性后的USY分子筛,B-USY分子筛具有丰富的连通介孔和良好的孔道扩散性能,并且保留了更多弱的B酸位点。以重整C7+芳烃为原料,在反应温度为170 ℃、反应压力为1.2 MPa、空速(LHSV)为10 h-1条件下,B-USY分子筛催化剂的单程寿命较USY分子筛催化剂提升30%。
洪美花 , 臧甲忠 , 王凌涛 , 刘冠锋 , 宫毓鹏 , 彭晓伟 . 硼掺杂Y分子筛的合成、改性及烯烃脱除性能研究[J]. 无机盐工业, 2022 , 54(12) : 139 -147 . DOI: 10.19964/j.issn.1006-4990.2022-0119
Boron-doped Y zeolite(B-Y zeolite) was prepared by hydrothermal synthesis and then subjected to ammonium exchange and hydrothermal treatment to obtain modified B-Y zeolite(B-USY zeolite).The composition,pore structure and acid property of B-Y zeolite and B-USY zeolite were characterized by a variety of characterization techniques,and the B-USY zeolite was used in the olefin removal reaction of reformate.The results showed that the unit cell parameters,relative crystallinity and framework stability of Y zeolite were decreased after the introduction of boron.Moreover,the introduction of boron promoted the increase of dealumination depth and the formation of connected mesopores during the modification process.Compared with USY zeolite modified by Y zeolite without boron doping,B-USY zeolite had abundant connected mesopores and good channel diffusion properties,and retained more weak Bronsted acid sites.Using reformed C7+ aromatics as raw material,the one-way life of B-USY zeolite catalyst was increased by 30% than that of USY zeolite under the conditions of reaction temperature of 170 ℃,pressure of 1.2 MPa and space velocity(LHSV) of 10 h-1.
Key words: boron-doped Y zeolite; mesopores; diffusion; acid property; olefin removal
| 1 | 时宝琦, 周亚新. 芳烃重整油脱烯烃技术进展[J]. 石油化工技术与经济, 2020, 36(4):58-62. |
| 1 | SHI Baoqi, ZHOU Yaxin. Development of aromatics reformate deolefin technology[J]. Technology & Economics in Petrochemicals, 2020, 36(4):58-62. |
| 2 | 黄志遥, 肖雪洋, 薛金召, 等. 催化重整生成油脱烯烃技术的现状及研究[J]. 化工设计通讯, 2020, 46(10):82-83. |
| 2 | HUANG Zhiyao, XIAO Xueyang, XUE Jinzhao, et al. Current status and research on deolefin technology of catalytic reforming oil[J]. Chemical Engineering Design Communications, 2020, 46(10):82-83. |
| 3 | 班辉, 陈祥, 李韶华. 重整生成油液相加氢脱烯烃与白土精制工艺运行总结[J]. 炼油技术与工程, 2021, 51(5):17-21. |
| 3 | BAN Hui, CHEN Xiang, LI Shaohua. Operation summary of liquid phase hydrodeolefin and clay refining process of reformate[J]. Petroleum Refinery Engineering, 2021, 51(5):17-21. |
| 4 | BEHESHTI M S, BEHZAD M, AHMADPOUR J, et al. Modification of H-[B]-ZSM-5 zeolite for methanol to propylene(MTP) conversion:Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance[J]. Microporous and Mesoporous Materials, 2020, 291.Doi:10.1016/j.micromeso.2019.109699 . |
| 5 | 翟岩亮, 张少龙, 张络明, 等. 不同B,Al分布对ZSM-5分子筛的甲醇制丙烯反应性能的影响[J]. 物理化学学报, 2019, 35(11):1248-1258. |
| 5 | ZHAI Yanliang, ZHANG Shaolong, ZHANG Luoming, et al. Effect of B and Al distribution in ZSM-5 zeolite on methanol to propylene reaction performance[J]. Acta Physico-Chimica Sinica, 2019, 35(11):1248-1258. |
| 6 | YUAN Z Y, LUO Q, LIU J Q, et al. Synthesis and characterization of boron-containing MCM-48 cubic mesoporous molecular sieves[J]. Microporous and Mesoporous Materials, 2001, 42(2/3):289-297. |
| 7 | 顾建峰, 袁忠勇. 含氮杂原子B-Beta分子筛的制备及其对Knoevenagel缩合反应的催化性能[J]. 工业催化, 2011, 19(12):43-48. |
| 7 | GU Jianfeng, YUAN Zhongyong. Preparation of nitrogen-incorporated B-Beta zeolites and their catalytic performance for Knoevenagel condensation[J]. Industrial Catalysis, 2011, 19(12):43-48. |
| 8 | LIU Q, WANG J, LIU Z, et al. Water-tolerant boron-substituted MCM-41 for oxidative dehydrogenation of propane[J]. ACS Omega, 2022, 7(3):3083-3092. |
| 9 | QIU Bin, LU Wenduo, GAO Xinqian, et al. Borosilicate zeolite enriched in defect boron sites boosting the low-temperature oxidative dehydrogenation of propane[J]. Journal of Catalysis, 2022, 408: 133-141. |
| 10 | KARAKAYA YALCIN B, IPEK B. Fluoride-free synthesis of mesoporous[Al]-[B]-ZSM-5 using cetyltrimethylammonium bromide and methanol-to-olefin activity with high propene selectivity[J]. Applied Catalysis A:General, 2021, 610. Doi:10.1016/j.apcata.2020.117915. |
| 11 | SADEGHPOUR P, HAGHIGHI M, KHALEDI K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol[J]. Materials Chemistry and Physics, 2018, 217: 133-150. |
| 12 | BEHESHTI M S, AHMADPOUR J, BEHZAD M, et al. Preparation of hierarchical H-[B]-ZSM-5 zeolites by a desilication method as a highly selective catalyst for conversion of methanol to propylene[J]. Brazilian Journal of Chemical Engineering, 2021, 38(1):101-121. |
| 13 | 沈志虹, 赵俊桥, 鞠雅娜, 等. BY分子筛的合成、表征及其裂化性能考察[J]. 燃料化学学报, 2006, 34(1):109-112. |
| 13 | SHEN Zhihong, ZHAO Junqiao, JU Yana, et al. Synthesis,characterization and catalytic performance of heteroatom substituted zeolite BY[J]. Journal of Fuel Chemistry and Technology, 2006, 34(1):109-112. |
| 14 | PAUL G, BISIO C, BRASCHI I, et al. Combined solid-state NMR,FT-IR and computational studies on layered and porous materials[J]. Chemical Society Reviews, 2018, 47(15):5684-5739. |
| 15 | ZHOU Hang, YI Xianfeng, HUI Yu, et al. Isolated boron in zeolite for oxidative dehydrogenation of propane[J]. Science, 2021, 372(6537):76-80. |
| 16 | HWANG S J, CHEN Congyan, ZONES S I. Boron sites in borosilicate zeolites at various stages of hydration studied by solid state NMR spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(48):18535-18546. |
| 17 | WEIHE M, HUNGER M, BREUNINGER M, et al. Influence of the nature of residual alkali cations on the catalytic activity of zeolites X,Y,and EMT in their br?nsted acid forms[J]. Journal of Catalysis, 2001, 198(2):256-265. |
| 18 | WOUTERS B H, CHEN T H, GROBET P J. Reversible tetrahedral-octahedral framework aluminum transformation in zeolite Y[J]. Journal of the American Chemical Society, 1998, 120(44):11419-11425. |
| 19 | PU Xin, SHI Li. Commercial test of the catalyst for removal of trace olefins from aromatics and its mechanism[J]. Catalysis Today, 2013, 212: 115-119. |
| 20 | REDDY J K, MANTRI K, LAD S, et al. Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream[J]. Journal of Porous Materials, 2020, 27(6):1649-1658. |
| 21 | ESCOBAR A S, PINTO F V, CERQUEIRA H S, et al. Role of nickel and vanadium over USY and RE-USY coke formation[J]. Applied Catalysis A:General, 2006, 315: 68-73. |
/
| 〈 |
|
〉 |