收稿日期: 2022-05-17
网络出版日期: 2022-12-19
基金资助
国家自然科学基金项目(51874200)
Study on synergistic modification of g-C3N4/Bi/Bi2WO6 photocatalyst
Received date: 2022-05-17
Online published: 2022-12-19
以五水合硝酸铋[Bi(NO3)3·5H2O]为铋源、二水合钨酸钠(Na2WO4·2H2O)为钨源通过水热法制备出多孔钨酸铋(Bi2WO6),并以纳米板条堆叠形成椭球结构的类石墨相氮化碳(g-C3N4)为基底通过溶剂热法在原位还原金属铋(Bi)的同时制备出具有Z型异质结构的g-C3N4/Bi/Bi2WO6(CN/B/BWO)复合光催化材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸附-脱附等温线(BET)、紫外-可见吸收光谱(UV-Vis)和光致发光(PL)光谱等检测手段对制备的样品进行了表征。结果表明,金属铋可以作为类石墨相氮化碳和钨酸铋之间的电荷转移媒介,其产生的表面等离子体共振(SPR)效应可协同增强光生电子-空穴对的分离效率和载流子的迁移率,从而提升样品的光催化活性。采用350 W氙灯照射30 min,样品CN/B/BWO-0.7对盐酸四环素(TC-H)的降解率达到99.94%,并对其降解机理进行了探讨。
黄曦瑶 , 李明春 , 郭银彤 . g-C3N4/Bi/Bi2WO6光催化材料的协同改性研究[J]. 无机盐工业, 2022 , 54(12) : 133 -138 . DOI: 10.19964/j.issn.1006-4990.2022-0221
By using Bi(NO3)3·5H2O as the bismuth source and Na2WO4·2H2O as the tungsten source,porous Bi2WO6 was prepared by hydrothermal method,and g-C3N4/Bi/Bi2WO26(CN/B/BWO) composite photocatalyst with Z-type heterostructure was prepared by solvothermal method with g-C3N4 with ellipsoidal structure formed by stacking nano strips as substrate and in situ reduction of metal Bi.The prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption desorption isotherm(BET),ultraviolet visible absorption spectrum(UV-vis) and photoluminescence spectrum(PL).The results showed that the metal Bi could be used as the charge transfer medium between g-C3N4 and Bi2WO6.The surface plasmon resonance(SPR) effect generated by metal Bi could synergistically enhance the separation efficiency of photogenerated electron-hole pairs and the mobility of carriers,thereby improving the photocatalytic activity of the samples.Under the irradiation of 350 W xenon lamp for 30 min,the degradation rate of tetracycline hydrochloride(TC-H) by sample CN/B/BWO-0.7 was 99.94%,and the degradation mechanism was discussed.
Key words: Bi2WO6; heterostructure; photocatalysis; tetracycline hydrochloride
| 1 | GUO Qiyao, HUANG Yunfang, XU Hui, et al. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation[J]. Solid State Sciences, 2018, 78: 95-106. |
| 2 | CHEN Lang, HE Jie, LIU Ying, et al. Recent advances in bismuth-containing photocatalysts with heterojunctions[J]. Chinese Journal of Catalysis, 2016, 37(6):780-791. |
| 3 | LIANG Fang, SHI Fanian. Progress in synthesis and degradation of organic pollutants by bismuth-based bimetallic photocatalysts[J]. Inorganic Chemicals Industry, 2022, 54(4):61-68. |
| 4 | WANG Fengliang, WANG Yingfei, FENG Yiping, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B:Environmental, 2018, 221: 510-520. |
| 5 | WANG Yong, TAN Guoqiang, DANG Mingyue, et al. Study on surface modification of g-C3N4 photocatalyst[J]. Journal of Alloys and Compounds, 2022, 908.Doi:10.1016/j.jallcom.2022.164507 . |
| 6 | LIU Yifan, LI Mingliang, LUO Yan, et al. Preparation of 3D-C3N4/Bi2WO6 visible light catalyst and its degradation of tetracycline[J]. Environmental Science and Technology, 2020, 43(7):84-93. |
| 7 | HELEN SELVI M, VANGA P R, HARINEE S, et al. Synthesis of bulk g-C3N4/Bi2WO6 nanocomposite for effective photocatalytic reaction and for antimicrobial activity by hydrothermal method[J]. Research on Chemical Intermediates, 2020, 46(2):1165-1181. |
| 8 | WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis:S-scheme heterojunction[J]. Chinese Journal of Catalysis, 2021, 42(5):667-669. |
| 9 | LOW J, JIANG Chuanjia, CHENG Bei, et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5).Doi:10.1002/smtd.201700080 . |
| 10 | XU Quanlong, ZHANG Liuyang, YU Jiaguo, et al. Direct Z-scheme photocatalysts:Principles,synthesis,and applications[J]. Materials Today, 2018, 21(10):1042-1063. |
| 11 | ZHANG Li, YANG Chao, LV Kangle, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement[J]. Chinese Journal of Catalysis, 2019, 40(5):755-764. |
| 12 | CUI Zhankui, ZENG Dawen, TANG Tengteng, et al. Processing-structure-property relationships of Bi2WO6 nanostructures as visible-light-driven photocatalyst[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):211-217. |
| 13 | ARIF M, ZHANG Min, MAO Yue, et al. Oxygen vacancy mediated single unit cell Bi2WO6 by Ti doping for ameliorated photocatalytic performance[J]. Journal of Colloid and Interface Science, 2020, 581: 276-291. |
| 14 | HUANG Yongkui, KANG Shifei, YANG Yun, et al. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light[J]. Applied Catalysis B:Environmental, 2016, 196: 89-99. |
| 15 | ZHAO Xinxin, YANG Hua, CUI Ziming, et al. Synergistically enhanced photocatalytic performance of Bi4Ti3O12 nanosheets by Au and Ag nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(14):13785-13796. |
| 16 | JIA Jiankui, ZHANG Xiaorui, JIANG Caiyun, et al. Visible-light-driven nitrogen-doped carbon quantum dots decorated g-C3N4/Bi2WO6 Z-scheme composite with enhanced photocatalytic activity and mechanism insight[J]. Journal of Alloys and Compounds, 2020, 835.Doi:10.1016/j.jallcom.2020.155180 . |
| 17 | YU Weilai, ZHANG Shuai, CHEN Junxiang, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution[J]. Journal of Materials Chemistry A, 2018, 6(32):15668-15674. |
| 18 | WU Qiangshun, CHAI Siqi, YANG Hanpei, et al. Enhancing visible-light driven photocatalytic performance of BiOBr by self-doping and in situ deposition strategy:A synergistic effect between Bi5+ and metallic Bi[J]. Separation and Purification Technology, 2020, 253.Doi:10.1016/j.seppur.2020.117388 . |
/
| 〈 |
|
〉 |