无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

g-C3N4/Bi/Bi2WO6光催化材料的协同改性研究

  • 黄曦瑶 ,
  • 李明春 ,
  • 郭银彤
展开
  • 沈阳工业大学材料科学与工程学院,辽宁 沈阳 110870
黄曦瑶(1997— ),女,硕士,主要研究方向为光催化材料制备及性能研究;E-mail:915296084@qq.com

收稿日期: 2022-05-17

  网络出版日期: 2022-12-19

基金资助

国家自然科学基金项目(51874200)

Study on synergistic modification of g-C3N4/Bi/Bi2WO6 photocatalyst

  • Xiyao HUANG ,
  • Mingchun LI ,
  • Yintong GUO
Expand
  • School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

Received date: 2022-05-17

  Online published: 2022-12-19

摘要

以五水合硝酸铋[Bi(NO33·5H2O]为铋源、二水合钨酸钠(Na2WO4·2H2O)为钨源通过水热法制备出多孔钨酸铋(Bi2WO6),并以纳米板条堆叠形成椭球结构的类石墨相氮化碳(g-C3N4)为基底通过溶剂热法在原位还原金属铋(Bi)的同时制备出具有Z型异质结构的g-C3N4/Bi/Bi2WO6(CN/B/BWO)复合光催化材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸附-脱附等温线(BET)、紫外-可见吸收光谱(UV-Vis)和光致发光(PL)光谱等检测手段对制备的样品进行了表征。结果表明,金属铋可以作为类石墨相氮化碳和钨酸铋之间的电荷转移媒介,其产生的表面等离子体共振(SPR)效应可协同增强光生电子-空穴对的分离效率和载流子的迁移率,从而提升样品的光催化活性。采用350 W氙灯照射30 min,样品CN/B/BWO-0.7对盐酸四环素(TC-H)的降解率达到99.94%,并对其降解机理进行了探讨。

本文引用格式

黄曦瑶 , 李明春 , 郭银彤 . g-C3N4/Bi/Bi2WO6光催化材料的协同改性研究[J]. 无机盐工业, 2022 , 54(12) : 133 -138 . DOI: 10.19964/j.issn.1006-4990.2022-0221

Abstract

By using Bi(NO33·5H2O as the bismuth source and Na2WO4·2H2O as the tungsten source,porous Bi2WO6 was prepared by hydrothermal method,and g-C3N4/Bi/Bi2WO26(CN/B/BWO) composite photocatalyst with Z-type heterostructure was prepared by solvothermal method with g-C3N4 with ellipsoidal structure formed by stacking nano strips as substrate and in situ reduction of metal Bi.The prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption desorption isotherm(BET),ultraviolet visible absorption spectrum(UV-vis) and photoluminescence spectrum(PL).The results showed that the metal Bi could be used as the charge transfer medium between g-C3N4 and Bi2WO6.The surface plasmon resonance(SPR) effect generated by metal Bi could synergistically enhance the separation efficiency of photogenerated electron-hole pairs and the mobility of carriers,thereby improving the photocatalytic activity of the samples.Under the irradiation of 350 W xenon lamp for 30 min,the degradation rate of tetracycline hydrochloride(TC-H) by sample CN/B/BWO-0.7 was 99.94%,and the degradation mechanism was discussed.

参考文献

1 GUO Qiyao, HUANG Yunfang, XU Hui, et al. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation[J]. Solid State Sciences, 2018, 78: 95-106.
2 CHEN Lang, HE Jie, LIU Ying, et al. Recent advances in bismuth-containing photocatalysts with heterojunctions[J]. Chinese Journal of Catalysis, 2016, 37(6):780-791.
3 LIANG Fang, SHI Fanian. Progress in synthesis and degradation of organic pollutants by bismuth-based bimetallic photocatalysts[J]. Inorganic Chemicals Industry, 2022, 54(4):61-68.
4 WANG Fengliang, WANG Yingfei, FENG Yiping, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B:Environmental, 2018, 221: 510-520.
5 WANG Yong, TAN Guoqiang, DANG Mingyue, et al. Study on surface modification of g-C3N4 photocatalyst[J]. Journal of Alloys and Compounds, 2022, 908.Doi:10.1016/j.jallcom.2022.164507 .
6 LIU Yifan, LI Mingliang, LUO Yan, et al. Preparation of 3D-C3N4/Bi2WO6 visible light catalyst and its degradation of tetracycline[J]. Environmental Science and Technology, 2020, 43(7):84-93.
7 HELEN SELVI M, VANGA P R, HARINEE S, et al. Synthesis of bulk g-C3N4/Bi2WO6 nanocomposite for effective photocatalytic reaction and for antimicrobial activity by hydrothermal method[J]. Research on Chemical Intermediates, 2020, 46(2):1165-1181.
8 WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis:S-scheme heterojunction[J]. Chinese Journal of Catalysis, 2021, 42(5):667-669.
9 LOW J, JIANG Chuanjia, CHENG Bei, et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5).Doi:10.1002/smtd.201700080 .
10 XU Quanlong, ZHANG Liuyang, YU Jiaguo, et al. Direct Z-scheme photocatalysts:Principles,synthesis,and applications[J]. Materials Today, 2018, 21(10):1042-1063.
11 ZHANG Li, YANG Chao, LV Kangle, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement[J]. Chinese Journal of Catalysis, 2019, 40(5):755-764.
12 CUI Zhankui, ZENG Dawen, TANG Tengteng, et al. Processing-structure-property relationships of Bi2WO6 nanostructures as visible-light-driven photocatalyst[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):211-217.
13 ARIF M, ZHANG Min, MAO Yue, et al. Oxygen vacancy mediated single unit cell Bi2WO6 by Ti doping for ameliorated photocatalytic performance[J]. Journal of Colloid and Interface Science, 2020, 581: 276-291.
14 HUANG Yongkui, KANG Shifei, YANG Yun, et al. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light[J]. Applied Catalysis B:Environmental, 2016, 196: 89-99.
15 ZHAO Xinxin, YANG Hua, CUI Ziming, et al. Synergistically enhanced photocatalytic performance of Bi4Ti3O12 nanosheets by Au and Ag nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(14):13785-13796.
16 JIA Jiankui, ZHANG Xiaorui, JIANG Caiyun, et al. Visible-light-driven nitrogen-doped carbon quantum dots decorated g-C3N4/Bi2WO6 Z-scheme composite with enhanced photocatalytic activity and mechanism insight[J]. Journal of Alloys and Compounds, 2020, 835.Doi:10.1016/j.jallcom.2020.155180 .
17 YU Weilai, ZHANG Shuai, CHEN Junxiang, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution[J]. Journal of Materials Chemistry A, 2018, 6(32):15668-15674.
18 WU Qiangshun, CHAI Siqi, YANG Hanpei, et al. Enhancing visible-light driven photocatalytic performance of BiOBr by self-doping and in situ deposition strategy:A synergistic effect between Bi5+ and metallic Bi[J]. Separation and Purification Technology, 2020, 253.Doi:10.1016/j.seppur.2020.117388 .
文章导航

/