无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

基于开尔文探针技术的磷酸铁锂表面势研究

  • 杨文宇 ,
  • 林志雅 ,
  • 付红 ,
  • 颜文悦 ,
  • 林建平 ,
  • 关贵清
展开
  • 宁德师范学院数理学院,福建 宁德 352100
杨文宇(1989— ),男,博士,讲师,从事新能源材料设计与储能机理研究;E-mail:wenyuyang62@163.com

收稿日期: 2022-02-23

  网络出版日期: 2022-11-23

基金资助

福建省自然科学基金项目(2020J05229);福建省量子调控与新能源材料重点实验室开放课题(QMNEM2010);宁德市指导性科技计划(20190001);福建省中青年教师教育科研项目(JAT200692);宁德师范学院引进人才科研项目(2018Y07)

Study on surface potential of lithium iron phosphate based on kelvin probe technology

  • Wenyu YANG ,
  • Zhiya LIN ,
  • Hong FU ,
  • Wenyue YAN ,
  • Jianping LIN ,
  • Guiqing GUAN
Expand
  • College of Mathematics and Physics,Ningde Normal University,Ningde 352100,China

Received date: 2022-02-23

  Online published: 2022-11-23

摘要

依托新颖的表面表征技术开尔文探针力显微镜(KPFM)获悉磷酸铁锂表面势的情况,以期深入研究锂离子在磷酸铁锂表面的动力学行为。研究结果表明,磷酸铁锂薄膜在常温下的功函数为5.38 eV,并且其功函数随着外界温度的上升而呈现出逐渐下降的趋势,在80 ℃时的功函数为4.69 eV。此现象意味着高温状况下的磷酸铁锂具有较好的电子迁移能力。此外,非原位的开尔文探针检测发现不同电压平衡状态下的磷酸铁锂具有不同的表面功函数。充电至4.3 V时,磷酸铁锂功函数为4.91 eV,放电至2.5 V时,功函数稳定在5.01 eV。显然,磷酸铁锂的功函数非常敏感于表面的锂离子脱出量。研究从功函数的新角度探究磷酸铁锂表面的锂离子动力学行为,期望能够为其他储能材料的脱锂过程研究提供参考。

本文引用格式

杨文宇 , 林志雅 , 付红 , 颜文悦 , 林建平 , 关贵清 . 基于开尔文探针技术的磷酸铁锂表面势研究[J]. 无机盐工业, 2022 , 54(11) : 65 -70 . DOI: 10.19964/j.issn.1006-4990.2022-0074

Abstract

Based on the novel surface characterization technology,Kelvin probe force microscope(KPFM) was used to study the surface potential of lithium iron phosphate in order to further study the dynamic behavior of lithium ions on the surface of lithium iron phosphate.The results showed that the work function of lithium iron phosphate film was 5.38 eV at room temperature,and its work function was gradually decreased with the increase of external temperature,and when the temperature reached 80 ℃,the work function of lithium iron phosphate was 4.69 eV.It represented that lithium iron phosphate at high temperature had good electron mobility.In addition,ex situ Kelvin probe detection found that lithium iron phosphate had different surface work functions under different voltage equilibrium states.When it was charged to 4.3 V,the work function of lithium iron phosphate was 4.91 eV,and when it was discharged to 2.5 V,the work function of material was stable at 5.01 eV.It could be seen that the work function of lithium iron phosphate was very sensitive to the amount of lithium ion on the surface.This study was to explore the lithium ion dynamic behavior on the surface of lithium iron phosphate from a new perspective of work function.It was hoped to provide a reference for the study of lithium removal process of other energy storage materials.

参考文献

1 冯晓晗,孙杰,何健豪,等.磷酸铁锂正极材料改性研究进 展[J].储能科学与技术,2022,11(2):467-486.
1 FENG Xiaohan, SUN Jie, HE Jianhao, et al.Research progress in LiFePO4 cathode material modification[J].Energy Storage Science and Technology,2022,11(2):467-486.
2 吴军,郑锋华,文春海,等.三相碳改性磷酸铁锂复合材料的制备及其电化学性能研究[J].矿冶工程,2021,41(3):138-142.
2 WU Jun, ZHENG Fenghua, WEN Chunhai, et al.Preparation and electrochemical performance of three-phase carbon modified lithi-um iron phosphate composite[J].Mining and Metallurgical Engineering,2021,41(3):138-142.
3 张婷,林森,于建国.磷酸铁锂正极材料的制备及性能强化研究进展[J].无机盐工业,2021,53(6):31-40.
3 ZHANG Ting, LIN Sen, YU Jianguo.Research progress in synthesis and performance enhancement of LiFePO4 cathode materials[J].Inorganic Chemicals Industry,2021,53(6):31-40.
4 王苑,阮丁山,曾勇,等.模板法制备磷酸铁锂纳米颗粒的研究[J].化工新型材料,2021,49(9):151-154,158.
4 WANG Yuan, RUAN Dingshan, ZENG Yong, et al.Study on preparation of LiFePO4 nanoparticle by template method[J].New Chemical Materials,2021,49(9):151-154,158.
5 曹贺,闻雷,郭震强,等.炭材料在低温型磷酸铁锂材料中的应用分析及展望[J].新型炭材料,2022,37(1):46-58.
5 CAO He, WEN Lei, GUO Zhenqiang, et al.Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures[J].New Carbon Materials,2022,37(1):46-58.
6 孙锴,王鑫,邓腾,等.尿素辅助高性能LiFePO4正极材料的制备及电化学性能研究[J].化工新型材料,2020,48(4):54-59.
6 SUN Kai, WANG Xin, DENG Teng, et al.Preparation of LiFePO4 anode assisted by urea and its electrochemical property[J].New Chemical Materials,2020,48(4):54-59.
7 吴星宇,阮丁山,毛林林,等.溶剂热法制备Mn掺杂LiFePO4正极材料及其电化学性能[J].无机化学学报,2021,37(8):1399-1406.
7 WU Xingyu, RUAN Dingshan, MAO Linlin, et al.Mn-doped LiFePO4 cathode material:Solvothermal preparation and electrochemical performance[J].Chinese Journal of Inorganic Chemistry,2021,37(8):1399-1406.
8 肖资龙,张经济,张志杰,等.Al和Mg共掺杂LiFePO4/C正极材料的电化学性能研究[J].矿冶工程,2018,38(5):148-151,156.
8 XIAO Zilong, ZHANG Jingji, ZHANG Zhijie, et al.Electrochemical performances of LiFePO4/C via Al and Mg co-doping[J].Mining and Metallurgical Engineering,2018,38(5):148-151,156.
9 KOBAYASHI S, FISHER C A J, KATO T, et al.Atomic-scale observations of(010) LiFePO4 surfaces before and after chemical delithiation[J].Nano Letters,2016,16(9):5409-5414.
10 MASCARO A, WANG Zi, HOVINGTON P, et al.Measuring spatially resolved collective ionic transport on lithium battery cathodes using atomic force microscopy[J].Nano Letters,2017,17(7):4489-4496.
11 LI Xing, JIANG Fei, QU Ke, et al.First atomic-scale insight into degradation in lithium iron phosphate cathodes by transmission electron microscopy[J].The Journal of Physical Chemistry Letters,2020,11(12):4608-4617.
12 DROZHZHIN O A, SOBOLEV A V, SUMANOV V D, et al.Exploring the origin of the superior electrochemical performance of hydrothermally prepared Li-rich lithium iron phosphate Li 1+ δ Fe1- δ PO4 [J].The Journal of Physical Chemistry C,2020,124(1):126-134.
13 NAGPURE S C, BHUSHAN B, BABU S S.Surface potential measurement of aged Li-ion batteries using Kelvin probe microsco-py[J].Journal of Power Sources,2011,196(3):1508-1512.
14 XU Guigui, ZHONG Kehua, YANG Yanmin, et al.Insight into delithiation process on the LiFePO4(010) surface from a novel viewpoint of the work function[J].Solid State Ionics,2019,338: 25-30.
文章导航

/