无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能

  • 马存双 ,
  • 万延华 ,
  • 许永开 ,
  • 陈卫华
展开
  • 郑州大学化学学院,绿色催化中心,河南 郑州 450001
马存双(1997— ),女,硕士研究生,主要研究能源电化学材料;E-mail:mcs19972021@163.com

收稿日期: 2022-02-07

  网络出版日期: 2022-06-22

基金资助

国家自然科学基金项目(21771164);河南省中原青年拔尖人才支持项目;郑州大学高层次人才支持计划项目

Preparation and sodium storage properties of ultra?thin N and S doped carbon coated FeS2

  • Cunshuang MA ,
  • Yanhua WAN ,
  • Yongkai XU ,
  • Weihua CHEN
Expand
  • Green Catalysis Center,and College of Chemistry,Zhengzhou University,Zhengzhou 450001,China

Received date: 2022-02-07

  Online published: 2022-06-22

摘要

钠离子电池(SIBs)因元素丰度高、成本低,在大规模储能领域具有广阔的应用前景,因此探索潜在的适配钠离子电池电极材料具有重要的研究意义。其中,高容量转化型负极材料硫化铁因元素丰度高、成本低、环境友好等优点备受关注。以活性大红染料为碳源,通过溶剂除杂和高温退火过程合成了小于2 nm超薄氮、硫掺杂碳材料包裹二硫化铁(FeS2/N,S-C)微米颗粒复合材料。三维连续的碳网络与杂原子掺杂,能够协同促进快速的电子传导,可有效缓解二硫化铁储钠过程中的体积膨胀;同时,质量分数低于4%的极低碳含量有助于提升电极和电池的质量及体积能量密度。研究结果表明,FeS2/N,S-C电极具有较高的可逆比容量(在0.1 A/g电流密度下可逆比容量达到758 mA·h/g)和优异的倍率性能(在10 A/g电流密度下保持207 mA·h/g的可逆比容量)。该研究工作不仅提供了一种潜在的低成本钠离子电池复合负极材料的制备方法,同时探索了高效氮掺杂碳包覆的新思路。

本文引用格式

马存双 , 万延华 , 许永开 , 陈卫华 . 超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能[J]. 无机盐工业, 2022 , 54(6) : 55 -60 . DOI: 10.19964/j.issn.1006-4990.2021-0617

Abstract

Sodium?ion batteries(SIBs) have broad application prospects in large?scale energy storage due to their high element abundance and low cost.Therefore,it is of great significance to explore potential electrode materials adapted to sodium?ion batteries.Among them,iron sulfide in high capacity conversion anode materials has attracted much attention due to its advantages of high element abundance,low cost and environmental friendliness.Using reactive scarlet dye as carbon source,2 nm ultra?thin nitrogen and sulfur doped carbon materials coated iron disulfide(FeS2/N,S-C) micron particle composites were synthesized by solvent impurity removal and high temperature annealing.The three?dimensional conductive carbon network and heteroatomic doping promoted the rapid electron conduction,effectively alleviated the volume expansion during the sodium storage process of FeS2.At the same time,the very low carbon content(~4%) helped to improve the mass and volumetric energy density of the electrode or cell.The results showed that the FeS2/N,S-C electrode had high reversible specific capacity(758 mA·h/g at 0.1 A/g) and excellent rate performance(207 mA·h/g at 10 A/g).This work not only provided a potential low?cost composite anode material for sodium?ion batteries,but also explored a new idea of efficient N-doped carbon coating.

参考文献

1 ZHAO Chenglong, WANG Qidi, YAO Zhenpeng,et al.Rational design of layered oxide materials for sodium?ion batteries[J].Science,2020,370(6517):708-711.
2 CHEN Mingzhe, WANG Enhui, LIU Qiannan,et al.Recent progress on iron- and manganese?based anodes for sodium?ion and pota?
2 ssium?ion batteries[J].Energy Storage Materials,2019,19:163-
178
3 曹余良.钠离子电池机遇与挑战[J].储能科学与技术,2020,9(3):757-761.
3 CAO Yuliang.The opportunities and challenges of sodium ion battery[J].Energy Storage Science and Technology,2020,9(3):757-761.
4 ZHOU Shangrui, LAN Jiaqi, SONG Keming,et al.SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage[J].FlatChem,2021,28.Doi:10.1016/j.flatc.2021.100259 .
5 XU Yanan, LIU Xiaofeng, SU Hang,et al.Hierarchical bimetallic selenides CoSe2-MoSe2/rGO for sodium/potassium?ion batteries anode:Insights into the intercalation and conversion mechanism[J].Energy & Environmental Materials,2021.Doi:10.1002/eem2.12206 .
6 XIAO Biwei, ROJO T, LI Xiaolin.Hard carbon as sodium?ion battery anodes:Progress and challenges[J].ChemSusChem,2019,12(1):133-144.
7 马艳梅.钠离子电池硫化物负极材料的研究进展[J].储能科学与技术,2019,8(3):488-494.
7 MA Yanmei.Recent research progress of metal sulfides as anode materials for sodium?ion batteries[J].Energy Storage Science and Technology,2019,8(3):488-494.
8 DAI Hongmei, TANG Mi, HUANG Jiming,et al.A series of molecule?intercalated MoS2 as anode materials for sodium ion batteries[J].ACS Applied Materials & Interfaces,2021,13(9):10870-10877.
9 SONG Keming, LIU Jiefei, DAI Hongliu,et al.Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage[J].Chem,2021,7(10):2684-2694.
10 DENG Xianchun, CHEN Hui, WU Xiangjiang,et al.Surface modification of Fe7S8/C anode via ultrathin amorphous TiO2 layer for enhanced sodium storage performance[J].Small,2020,16(20).Doi:10.1002/smll.202000745 .
11 QI Shihan, MI Liwei, SONG Keming,et al.Understanding shuttling effect in sodium ion batteries for the solution of capacity fading:FeS2 as an example[J].The Journal of Physical Chemistry C,2019,123(5):2775-2782.
12 LI Zhaohui, ZHANG Yongcheng, LI Xiangkun,et al.Reacquainting the electrochemical conversion mechanism of FeS2 sodium?ion batteries by operando magnetometry[J].Journal of the American Chemical Society,2021,143(32):12800-12808.
13 LI Xin, QI Shihan, ZHANG Wenchao,et al.Recent progress on FeS2 as anodes for metal?ion batteries[J].Rare Metals,2020,39(11):1239-1255.
14 LI Pengju, SHEN Yanglin, LI Ximing,et al.Fullerene?intercalated graphitic carbon nitride as a high?performance anode material for sodium?ion batteries[J].Energy & Environmental Materials, 2021.Doi:10.1002/eem2.12200 .
15 YUAN Yu, CHEN Ziwei, YU Haoxiang,et al.Heteroatom?doped carbon?based materials for lithium and sodium ion batteries[J].Energy Storage Materials,2020,32:65-90.
16 JIN Aihua, KIM M J, LEE K S,et al.Spindle?like Fe7S8/N-doped carbon nanohybrids for high?performance sodium ion battery anodes[J].Nano Research,2019,12(3):695-700.
17 LIU Zhiming, LU Tianchi, SONG T,et al.Structure?designed synthesis of FeS2@C yolk?shell nanoboxes as a high?performance anode for sodium?ion batteries[J].Energy & Environmental Science,2017,10(7):1576-1580.
18 CHEN Kongyao, LI Gaojie, WANG Yanjie,et al.High loading FeS2 nanoparticles anchored on biomass?derived carbon tube as low cost and long cycle anode for sodium?ion batteries[J].Green Energy & Environment,2020,5(1):50-58.
19 WANG Qinghong, GUO Can, ZHU Yuxuan,et al.Reduced graphene oxide?wrapped FeS2 composite as anode for high?performance sodium?ion batteries[J].Nano-Micro Letters,2018,10(2).Doi:10.1007/s40820-017-0183-z .
20 WANG Xukun, SHI Juan, MI Liwei,et al.Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium?ion batteries[J].Rare Metals,2020,39(9):1053-1062.
21 WANG Shiwen, JING Yaping, HAN Lifeng,et al.Ultrathin carbon?
21 FeS coated 2 nanooctahedra for sodium storage with long cycling stability[J].Inorganic Chemistry Frontiers,2019,6(2):459-464.
22 HARIDAS A K,HEO J, LI Xueying,et al.A flexible and free?standing FeS/sulfurized polyacrylonitrile hybrid anode material for high?rate sodium?ion storage[J].Chemical Engineering Journal,2020,385.Doi:10.1016/j.cej.2019.123453 .
23 WAN Yanhua, SONG Keming, CHEN Weihua,et al.Ultra?high initial coulombic efficiency induced by interface engineering enables rapid,stable sodium storage[J].Angewandte Chemie International Edition,2021,60(20):11481-11486.
24 XU Yongkai, SUN Haozheng, MA Cunshuang,et al.Pre?sodiation
24 strategy for superior sodium storage batteries[J].Chinese Journal of Chemical Engineering,2021,39:261-268.
25 LI Laiquan, TANG Cheng, ZHENG Yao,et al.Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic?nitrogen?carbon[J].Advanced Energy Materials,2020,10(21).Doi:10.1002/aenm.202000789 .
26 JING Peng, WANG Qiong, WANG Boya,et al.Encapsulating yolk?
26 FeS shell 2 @carbon microboxes into interconnected graphene fra?
26 mework for ultrafast lithium/sodium storage[J].Carbon,2020,159:366-377.
27 JIANG Xiuyong, CAO Tong, ZHANG Fan,et al.Nitrogen?doped porous carbon framework supports ultrafine FeS2 nanoparticles as advanced performance anode materials for sodium?ion batteries[J].ACS Applied Energy Materials,2021,4(7):6874-6882.
文章导航

/