纳米粒子掺杂太阳盐复合材料热物性研究
收稿日期: 2021-07-14
网络出版日期: 2022-05-31
基金资助
盐湖镁资源的有效利用与产品工程(U1707603);中国科学院西部青年学者(E110HX0501)
Study on thermophysical properties of solar salt composites doped with nanoparticles
Received date: 2021-07-14
Online published: 2022-05-31
在聚光式太阳能系统中,熔盐被视为良好的储热材料,具有成本低、使用安全、低饱和蒸汽压等特点。合理改善其热物性可实现太阳能高效利用,掺杂纳米颗粒可提高熔盐的储热及传热性能。在之前工作中,采用高温静态熔融法将纳米氧化铝(Nano alumina,NA2)掺杂于太阳盐(SS,质量分数为60%的硝酸钠与质量分数为40%的硝酸钾的混合物)中,获得了具有较高比热容的纳米流体(NA2-SS,N2S)。在此基础上,采用相同方法将纳米石墨粉(GP)和NA2同时掺杂于SS中(NA2-GP-SS,N2GS),利用差式扫描量热法和瞬态平面热源法对体系比热和导热进行测试。结果表明,优化样品为N2GS-4,比热容与原样SS相比提升21.79%,导热提升20.69%,在高温状态下具有较好的热稳定性。N2GS-4作为一种硝酸盐基纳米复合蓄热材料在热能存储系统中具有广阔的应用前景。
张月 , 王敏 , 李锦丽 , 赵有璟 , 王怀有 . 纳米粒子掺杂太阳盐复合材料热物性研究[J]. 无机盐工业, 2022 , 54(5) : 54 -60 . DOI: 10.19964/j.issn.1006-4990.2021-0427
In concentrating solar energy system,molten salt can be regarded as good heat storage material with the characteristics of low cost,safe use and low saturated vapor pressure.Reasonable improvement of its thermal properties can realize the efficient utilization of solar energy.Doping nanoparticles can improve the heat storage and transfer performance of molten salt.In previous work,nano alumina(NA2) was doped into solar salt(SS,60% NaNO3+40% KNO3,mass ratio) by high?temperature static melting method to obtain nanofluids(NA2-SS,N2S) with high specific heat capacity.On this basis,nano?graphite powder(GP) and NA2 were simultaneously doped into SS(NA2-GP-SS,N2GS) by the same method.The specific heat and thermal conductivity of the system were measured by differential scanning calorimetry and transient plane heat source method.The results showed that the optimized sample was N2GS-4,its specific heat was 21.79% higher than the original SS,and thermal conductivity was increased by 20.69%,which had excellent thermal stability at high temperature.N2GS-4,as a kind of nitrate based nanocomposite thermal storage material,had a broad application prospect in thermal energy storage system due to its high thermal storage and heat transfer performance.
Key words: solar salt; nanofluids; specific heat capacity; thermal conductivity; nanocomposites
1 | HU Yanwei, HE Yurong, ZHANG Zhenduo,et al.Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J].Energy Conversion and Management,2017,142:366-373. |
2 | DENG Ziyang, ZHOU Jianhua, MIAO Lei,et al.The emergence of solar thermal utilization:Solar?driven steam generation[J].Journal of Materials Chemistry A,2017,5(17):7691-7709. |
3 | LIN Yawen, XU Hao, SHAN Xiaoli,et al.Solar steam generation based on the photothermal effect:From designs to applications,and beyond[J].Journal of Materials Chemistry A,2019,7(33):19203-19227. |
4 | GIL A, MEDRANO M, MARTORELL I,et al.State of the art on high temperature thermal energy storage for power generation.Part 1Concepts,materials and modellization[J].Renewable and Sustainable Energy Reviews,2010,14(1):31-55. |
5 | CHEN Xia, WU Yuting, ZHANG Ludi,et al.Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting[J].Solar Energy Materials and Solar Cells,2018,176:42-48. |
6 | TIAN Y, ZHAO C Y.A review of solar collectors and thermal energy storage in solar thermal applications[J].Applied Energy,2013,104:538-553. |
7 | 郑天新,梁精龙,李慧,等.熔盐技术在新能源中的应用现状[J].无机盐工业,2018,50(3):11-15. |
7 | ZHENG Tianxin, LIANG Jinglong, LI Hui,et al.Application status of molten salt technology in new energy[J].Inorganic Chemicals Industry,2018,50(3):11-15. |
8 | MEKHILEF S, SAIDUR R, SAFARI A.A review on solar energy use in industries[J].Renewable and Sustainable Energy Reviews,2011,15(4):1777-1790. |
9 | YE Feng, GE Zhiwei, DING Yulong,et al.Multi?walled carbon nano? |
9 | tubes added to Na 2 CO3/MgO composites for thermal energy stor? |
9 | age[J].Particuology,2014,15:56-60. |
10 | CHOI S U S, EASTMAN J A.Enhancing thermal conductivity of fluids with nanoparticles[J].ASME International Mechanical Engineering Congress & Exposition,1995,231(1):99-105. |
11 | HAN Zhenxing, RAM M K, KAMAL R,et al.Characterization of molten salt doped with different size nanoparticles of Al2O3 [J].International Journal of Energy Research,2019,43(8):3732-3745. |
12 | HO M X, PAN C.Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J].International Journal of Heat and Mass Transfer,2014,70:174-184. |
13 | SHIN D, BANERJEE D.Enhancement of specific heat capacity of high?temperature silica?nanofluids synthesized in alkali chloride salt eutectics for solar thermal?energy storage applications[J].International Journal of Heat and Mass Transfer,2011,54(5/6):1064-1070. |
14 | CHIERUZZI M, CERRITELLI G F, MILIOZZI A,et al.Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J].Solar Energy Materials and Solar Cells,2017,167:60-69. |
15 | WU Yanze, LI Jinli, WANG Min,et al.Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP[J].RSC Advances,2018,8(34):19251-19260. |
16 | MURSHEDS M S, LEONGK C, YANG C.Enhanced thermal conductivity of TiO2—Water based nanofluids[J].International Journal of Thermal Sciences,2005,444:367-373. |
17 | 冯晓平,郝学军.强化三元混合熔盐的传热性能的实验研究[J].无机盐工业,2021,53(8):66-70. |
17 | FENG Xiaoping, HAO Xuejun.Experimental study on enhanced heat transfer performance of ternary mixed molten salts[J].Inorganic Chemicals Industry,2021,53(8):66-70. |
18 | ZHANG Yue, LI Jinli, GAO Lin,et al.Nitrate based nanocomposite thermal storage materials:Understanding the enhancement of thermophysical properties in thermal energy storage[J].Solar Energy Materials and Solar Cells,2020,216.Doi:org/10.1016/j.solmat.2020.110727 . |
19 | NOMURA T, OKINAKA N, AKIYAMA T.Technology of latent heat storage for high temperature application:A review[J].ISIJ International,2010,50(9):1229-1239. |
20 | PINCEMIN S, OLIVES R,PY X,et al.Highly conductive composites made of phase change materials and graphite for thermal storage[J].Solar Energy Materials and Solar Cells,2008,92(6): |
20 | 603-613. |
21 | XIA L, ZHANG P.Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage[J].Solar Energy Materials and Solar Cells,2011,95(8):2246-2254. |
22 | XIAO X, ZHANG P, LI M.Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J].Energy Conversion and Management,2013,73:86-94. |
23 | LAING D, BAUER T, STEINMANN W D,et al.Advanced high temperature latent heat storage system?design and test resul? |
23 | ts[C]∥In Proceedings of the 11th International Conference on Thermal Energy Storage-Effstock,2009:1-8. |
24 | STEINMANN W D, LAING D, TAMME R.Development of PCM storage for process heat and power generation[J].Journal of Solar Energy Engineering,2009,131(4).Doi:org/10.1115/1.3197834 . |
25 | SHABGARD H, BERGMAN T L, SHARIFI N,et al.High temperature latent heat thermal energy storage using heat pipes[J].International Journal of Heat and Mass Transfer,2010,53(15/16):2979-2988. |
26 | NITHYANANDAM K, PITCHUMANI R.Analysis and optimization of a latent thermal energy storage system with embedded heat pipes[J].International Journal of Heat and Mass Transfer,2011,54(21/22):4596-4610. |
27 | NITHYANANDAM K, PITCHUMANI R.Design of a latent thermal energy storage system with embedded heat pipes[J].Applied Energy,2014,126:266-280. |
28 | JEGADHEESWARAN S, POHEKAR S D.Performance enhancement in latent heat thermal storage system:A review[J].Renewable and Sustainable Energy Reviews,2009,13(9):2225- |
28 | 2244. |
29 | MICHELS H, PITZ-PAAL R.Cascaded latent heat storage for parabolic trough solar power plants[J].Solar Energy,2007,81(6):829-837. |
30 | WANG Jianfeng, CHEN Guangming, JIANG Haobo.Theoretical study on a novel phase change process[J].International Journal of Energy Research,1999,23(4):287-294. |
31 | WANG Jianfeng, OUYANG Yingxiu, CHEN Guangming.Experimental study on charging processes of a cylindrical heat storage capsule employing multiple?phase?change materials[J].International Journal of Energy Research,2001,25(5):439-447. |
32 | O'HANLEY H, BUONGIORNO J, MCKRELL T,et al.Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry[J].Advances in Mechanical Engineering,2012,4.Doi:10.1155/2012/181079 . |
33 | DUDDAB, SHIN D.Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J].International Journal of Thermal Sciences,2013,69:37-42. |
34 | VALIZADEH Z, ABBASPOUR M.Surface energy,relative stability,and structural properties of Au-Pt,Au-Rh,Au-Cu,and Au-Pd nanoclusters created in inert?gas condensation process using MD simulation[J].Journal of Physics and Chemistry of Solids,2020,144.Doi:10.1016/j.jpcs.2020.109480 . |
35 | SHIN D, BANERJEE D.Enhanced specific heat of silica nanofluid[J].Journal of Heat Transfer,2011,133(2).Doi:10.1115/1.4002600 . |
36 | XU Zhaomei, GE Daohan, ZHANG Liqiang.Simulation and prediction on phonon thermal conductivity of Al/Cu interface[J].Journal of Physics and Chemistry of Solids,2018,122:184-188. |
37 | JANG S P, CHOI S U S.Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J].Applied Physics Letters,2004,84(21):4316-4318. |
38 | ALY K A, KHALIL N M, ALGAMAL Y,et al.Lattice strain estimation for CoAl2O4 nano particles using Williamson-Hall analysis[J].Journal of Alloys and Compounds,2016,676:606-612. |
/
〈 |
|
〉 |