无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
磷石膏的资源化利用

磷石膏基复合相变材料的制备及储热性能研究

  • 李紫瑞 ,
  • 邢冬娴 ,
  • 汤建伟 ,
  • 王保明 ,
  • 化全县 ,
  • 刘丽 ,
  • 刘咏
展开
  • 1.郑州大学化工学院,河南郑州450001
    2.郑州大学生态与环境学院
    3.郑州大学国家钙镁磷复合肥技术研究推广中心
李紫瑞(1996— ),男,硕士,从事磷石膏资源化利用的相关研究;E-mail: 1173430006@qq.com

收稿日期: 2021-05-28

  网络出版日期: 2022-04-18

基金资助

国家自然科学基金项目(21576246);河南省高校科技创新团队(19IRTSTHN028)

Study on preparation and heat storage performance of phosphogypsum-based composite phase change materials

  • Zirui LI ,
  • Dongxian XING ,
  • Jianwei TANG ,
  • Baoming WANG ,
  • Quanxian HUA ,
  • Li LIU ,
  • Yong LIU
Expand
  • 1. School of Chemical Engineering,Zhengzhou University,Zhengzhou 450001,China
    2. School of Ecology and Environment,Zhengzhou University
    3. National Centre of Research & Popularization on Calcium,Magnesium,Phosphate and Compound Fertilizer Technology,Zhengzhou University

Received date: 2021-05-28

  Online published: 2022-04-18

摘要

以磷石膏为原料,采用常压盐溶液法在硝酸镁溶液中制备α-半水石膏,以凹凸棒土和聚氨酯为载体、十水硫酸钠和结晶乙酸钠二元共晶水合盐为相变材料,采用真空吸附法制备定形相变材料,然后将α-半水石膏与定形相变材料复合制备磷石膏基相变材料,并考察了其机械强度和储放热性能。结果表明,由磷石膏制备的α-半水石膏抗折、抗压强度分别为8.9、36.8 MPa,定形相变材料的相变温度为28.5 ℃,相变焓为82.6 J/g。由于掺入相变材料导致石膏晶体结合点减少,磷石膏基相变材料抗压强度降低,但其仍然能够达到建筑石膏的使用要求。升、降温实验结果表明,磷石膏复合相变材料与纯磷石膏保温箱相比,温差为8.9 ℃,具有一定的储能效果。

本文引用格式

李紫瑞 , 邢冬娴 , 汤建伟 , 王保明 , 化全县 , 刘丽 , 刘咏 . 磷石膏基复合相变材料的制备及储热性能研究[J]. 无机盐工业, 2022 , 54(4) : 34 -39 . DOI: 10.19964/j.issn.1006-4990.2021-0350

Abstract

α-hemihydrate gypsum was prepared from phosphogypsum as raw materials in magnesium nitrate solution by the atmospheric salt solution method.With attapulgite and polyurethane used as the carrier,sodium sulfate decahydrate and crystalline sodium acetate binary eutectic hydrated salt used as the phase change materials,the form-stable phase change materials were prepared by the vacuum adsorption method.Then the α-hemihydrate gypsum and the form-stable phase change materials were combined to prepare the phosphogypsum-based phase change materials,and their mechanical strength and heat storage-release properties were investigated.The results showed that the bending strength and compressive strength of α-hemihydrate gypsum prepared from phosphogypsum were 8.9 MPa and 36.8 MPa,respectively.The phase change temperature of the shaped phase change material was 28.5 ℃,and the phase change enthalpy was 82.6 J/g.The compressive strength of the phosphogypsum-based phase change material was decreased due to the reduction of the gypsum crystal bonding points caused by the incorporation of the phase change material,but it still could meet the requirement of the use of building gypsum.The results of the heating and cooling experiments showed that the phosphogypsum composite phase change material had a certain energy storage effect compared with the pure phosphogypsum incubator with the temperature difference of 8.9 ℃.

参考文献

[1] 白海丹. 2019年我国磷石膏利用现状、问题及建议[J]. 硫酸工业, 2020(12):7-10.
[2] WANG J. Utilization effects and environmental risks of phosphogypsum in agriculture:A review[J]. Journal of Cleaner Production, 2020, 276.Doi: 10.1016/j.jclepro.2020.123337.
[3] 董占能, 郝士勇, 邓来. 磷石膏一步法制硫酸钾肥工艺研究[J]. 无机盐工业, 2012, 44(11):52-54.
[4] LI X, ZHANG Q, SHEN Z, et al. L-aspartic acid:A crystal modifier for preparation of hemihydrate from phosphogypsum in CaCl2 solution[J]. Journal of Crystal Growth, 2019, 511:48-55.
[5] LIU Y, XIE M, GAO X, et al. Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage[J]. Applied Thermal Engineering, 2018, 140:112-119.
[6] ALVA G, LIU L, HUANG X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68:693-706.
[7] MOHAMED S A, AL SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70:1072-1089.
[8] RAO Z, XU T, LIU C, et al. Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization[J]. Solar Energy Materials and Solar Cells, 2018, 188:6-17.
[9] ABDEALI G, BAHRAMIAN A R, ABDOLLAHI M. Review on nanotructure supporting material strategies in shape-stabilized phase change materials[J]. Journal of Energy Storage, 2020, 29.Doi: 10.1016/j.est.2020.101299.
[10] FANG G, TANG F, CAO L. Preparation,thermal properties and applications of shape-stabilized thermal energy storage materials[J]. Renewable and Sustainable Energy Reviews, 2014, 40:237-259.
[11] JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials(PCMs) as a thermal energy storage(TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31:531-542.
[12] 叶志林, 魏婷, 易红玲, 等. 癸酸-棕榈酸/膨胀珍珠岩定型相变材料的制备与热性能[J]. 华东理工大学学报:自然科学版, 2017, 43(4):495-500.
[13] SINGH M. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research, 2002, 32(7):1033-1038.
[14] MI Y, CHEN D, WANG S. Utilization of phosphogypsum for the preparation of α-calcium sulfate hemihydrate in chloride-free solution under atmospheric pressure[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8):2371-2379.
[15] XIE N, NIU J, ZHONG Y, et al. Development of polyurethane acrylate coated salt hydrate/diatomite form-stable phase change material with enhanced thermal stability for building energy storage[J]. Construction and Building Materials, 2020, 259.Doi: 10.1016/j.conbuildmat.2020.119714.
[16] 陈小龙, 卢都友. 石膏基相变储能材料的制备及性能研究[J]. 材料导报, 2014, 28(8):130-134.
文章导航

/