碳酸钾活化一步法制备高比表活性炭及其电容性能的研究
收稿日期: 2021-06-18
网络出版日期: 2022-04-18
基金资助
中国烟草总公司四川省公司科技计划项目(SCYC201918)
Study on one-step preparation of activated carbon with high specific surface by K2CO3 activation and its capacitance performance
Received date: 2021-06-18
Online published: 2022-04-18
张天亮 , 李军 , 熊巍 , 张海燕 , 陶晓秋 . 碳酸钾活化一步法制备高比表活性炭及其电容性能的研究[J]. 无机盐工业, 2022 , 54(4) : 159 -164 . DOI: 10.19964/j.issn.1006-4990.2021-0383
Waste tobacco was used as the carbon source to prepare tobacco-based porous carbon in one step with K2CO3 as the activator.Scanning electron microscope(SEM),X-ray diffraction(XRD),N2 adsorption-desorption analysis(BET),Raman spectroscopy(Raman) and other methods were applied to characterize the porous material.The results showed that the surface of the material contained heteroatom groups such as ether groups and carboxyl groups,and it had a rich pore structure with a specific surface area of up to 2 058 m2/g.The electrochemical performance results in the three-electrode system showed that when the mass ratio of K2CO3 to waste tobacco was 3∶1,it had the best electrical storage performance,and its specific capacitance could reach 337 F/g at 1 A/g.It could be charged and discharged for 2 000 times at 10 A/g.The capacitance still retained 97.3% of the initial capacitance,with good rate performance and cycle stability.
Key words: waste tobacco; K2CO3; porous carbon; supercapacitor
[1] | MICHAELIDES E E. Energy,the environment,and sustainability[M]. Boca Raton: CRC Press, 2018. |
[2] | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature materials, 2017, 16(1):16-22. |
[3] | POIZOT P, GAUBICHER J, RENAULT S, et al. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chemical Reviews, 2020, 120(14):6490-6557. |
[4] | DUBEY R, GURUVIAH V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics, 2019, 25(4):1419-1445. |
[5] | DOU Q, WU N, YUAN H, et al. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond[J]. Chemical Society Reviews, 2021, 50(12):6734-6789. |
[6] | WANG Y, SONG Y, XIA Y. Electrochemical capacitors:Mechanism, materials,systems,characterization and applications[J]. Chemical Society Reviews, 2016, 45(21):5925-5950. |
[7] | BONACCORSO F, COLOMBO L, YU G, et al. Graphene,related twodimensional crystals,and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217).Doi: 10.1126/science.1246501. |
[8] | GOGOTSI Y, SIMON P. True performance metrics in electrochemical energy storage[J]. Science, 2011, 334(6058):917-918. |
[9] | 刘冠良, 刘鹏, 余林, 等. 氮掺杂科琴黑碳材料的制备及电催化氧还原性能研究[J]. 无机盐工业, 2019, 51(10):84-88. |
[10] | CHEN Zehong, ZHUO Hao, HU Yijie, et al. Self-biotemplate preparation of hierarchical porous carbon with rational mesopore ratio and high oxygen content for an ultrahigh energy-density supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):7138-7150. |
[11] | LAINE J, YUNES S. Effect of the preparation method on the pore size distribution of activated carbon from coconut shell[J]. Carbon, 1992, 30(4):601-604. |
[12] | 林烨, 姚路, 吴登鹏, 等. 基于柳絮的生物质活性炭制备及电容性能的研究[J]. 电子元件与材料, 2018, 37(10):13-21. |
[13] | KANG D, LIU Q, GU J, et al. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano, 2015, 9(11):11225-11233. |
[14] | 陈辉, 郭燕川, 王富, 等. 烟草基活性炭材料用于电化学超级电容器[J]. 新型炭材料, 2017, 32(6):592-599. |
[15] | YANG L, LUO S, SU F, et al. Carbon-nanotube-guiding oriented growth of gold shrubs on TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2010, 114(17):7694-7699. |
[16] | 武昕彤. 杂原子掺杂生物质多孔碳的制备及在超级电容器中的应用[D]. 山西:中北大学, 2020. |
[17] | FRACKOWIAK E, BEGUIN F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6):937-950. |
/
〈 |
|
〉 |