无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

基于响应面法的粉煤灰氨含量测定过程浸提条件优化研究

  • 李亚娇 ,
  • 赵艺伟 ,
  • 鞠恺 ,
  • 唐仁龙 ,
  • 李龙清 ,
  • 邵小平 ,
  • 张高锋 ,
  • 任武昂
展开
  • 1.西安科技大学建筑与土木工程学院,陕西西安 710054
    2.西安科技大学能源学院
    3.中国电建集团西北勘测设计研究院有限公司
李亚娇(1978— ),女,博士,副教授,研究方向为环境水文;E-mail: 65942271@qq.com

收稿日期: 2021-05-26

  网络出版日期: 2022-04-18

基金资助

陕西省自然科学基础研究计划项目(2019JM-347);西安科技大学博士启动金资助项目(2017QDJ062);陕西省水利科技计划项目(2021slkj-5)

Study on optimization of extraction conditions in process of determination of ammonia content in fly ash based on response surface method

  • Yajiao LI ,
  • Yiwei ZHAO ,
  • Kai JU ,
  • Renlong TANG ,
  • Longqing LI ,
  • Xiaoping SHAO ,
  • Gaofeng ZHANG ,
  • Wuang REN
Expand
  • 1. School of Architecture and Civil Engineering,Xi′an University of Science and Technology,Xi′an,710054,China
    2. College of Energy Engineering,Xi′an University of Science and Technology
    3. Northwest Engineering Corporation Limited

Received date: 2021-05-26

  Online published: 2022-04-18

摘要

针对粉煤灰氨含量的测定研究大多考虑单一因素,而忽略了在浸提过程中各因素间的交互作用对粉煤灰氨含量浸提的影响。以浸提剂浓度(A)、固液比(B)、振荡时间(C)作为考察因素,在单因素实验的基础上进行响应面实验,建立回归模型。通过响应面优化确定最佳的浸提工艺并与现有浸提方法的测定结果进行对比。结果表明,影响因素主次顺序为BACABBCAC。最佳浸提工艺条件:浸提剂浓度为0.125 mol/L、固液比(质量体积比,g/mL,以下简称固液比)为1∶12.8、振荡时间为22 s。通过验证,发现实测值与预测值仅存在-2%的相对误差。相较现有浸提方法,优化后的浸提方法不仅使浸提时间大幅缩短,还使浸出率增加了73%~91%,为粉煤灰中氨含量的准确测定提供了新的方法与思路。

本文引用格式

李亚娇 , 赵艺伟 , 鞠恺 , 唐仁龙 , 李龙清 , 邵小平 , 张高锋 , 任武昂 . 基于响应面法的粉煤灰氨含量测定过程浸提条件优化研究[J]. 无机盐工业, 2022 , 54(4) : 145 -151 . DOI: 10.19964/j.issn.1006-4990.2021-0345

Abstract

For the research on determination of ammonia content in fly ash,a single factor is mostly considered,but the influence of the interaction of various factors on the extraction of the ammonia content of fly ash during the extraction process is ignored.In this study,the extractant concentration(A),solid-to-liquid ratio(B),and oscillation time(C) were used as investigating factors,and a response surface test was conducted on the basis of single factor test to establish a regression model.The optimal extraction process was determined through response surface optimization and compared with the measurement results of existing extraction methods.The results showed that the order of influencing factors was BACABBCAC.The best extraction process was extractant concentration of 0.125 mol/L,solid-liquid ratio (g/mL) of 1∶12.8,the oscillation time of 22 s.Through verification,it was found that there was only a relative error of -2% between the measured value and the predicted value.Compared with the existing extraction method,the optimized extraction method not only greatly shortened the extraction time,but also increased the extraction rate by 73% to 91%,which provided a new method and idea for the accurate determination of ammonia content in fly ash.

参考文献

[1] 王丽萍, 李超. 粉煤灰资源化技术开发与利用研究进展[J]. 矿产保护与利用, 2019, 39(4):38-45.
[2] 姜龙. 燃煤电厂粉煤灰综合利用现状及发展建议[J]. 洁净煤技术, 2020, 26(4):31-39.
[3] JANG H S, XING S. A model to predict ammonia emission using a modified genetic artificial neural network:Analyzing cement mixed with fly ash from a coal-fired power plant[J]. Construction and Building Materials, 2020, 230.Doi: 10.1016/j.conbuildmat.2019.117025.
[4] 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2):1-5.
[5] 宋高峰, 刘会臣, 任志成. “三下”压煤充填采煤技术发展现状及展望[J]. 煤矿安全, 2014, 45(10):191-193,197.
[6] 孔祥芝, 陈改新, 刘艳霞, 等. 脱硝粉煤灰中铵盐对水工混凝土性能的影响[J]. 水利水电技术, 2020, 51(9):216-223.
[7] 殷海波, 李洋, 王述银, 等. 粉煤灰中残留氨含量对混凝土性能影响[J]. 水力发电, 2019, 45(5):118-122.
[8] BERANOVÁ D, OPRAVIL T, PTÁCEK P, et al. Release of ammonia from conventional power plant fly ash after the introduction of SNCR process[J]. Iop Conference, 2018, 379(1).Doi: 10.1088/1757-899X/379/1/012031.
[9] ROESSLER J, CHENG W, HAYES J B, et al. Evaluation of the leaching risk posed by the beneficial use of ammoniated coal fly ash[J]. Fuel, 2016, 184:613-619.
[10] 刘冠杰, 陈玉峰, 任建国. 高铵盐粉煤灰在混凝土中的应用研究[J]. 新型建筑材料, 2016, 43(11):27-29,38.
[11] 刘音, 王凯, 郭皓, 等. 含氨粉煤灰对充填膏体性能影响试验研究[J]. 煤炭工程, 2020, 52(10):149-153.
[12] 黄明辉, 李洋, 樊义林, 等. 白鹤滩水电站粉煤灰残留氨控制研究与实践[J]. 人民长江, 2019, 50(11):189-193.
[13] 陆超, 黄仁阔, 霍旭佳, 等. 脱硝粉煤灰铵含量检测方法对比探讨[J]. 人民黄河, 2019, 41(S2):161-162,168.
[14] 殷海波, 黄明辉, 张锐, 等. 粉煤灰中残留氨检测方法的影响因素分析[J]. 长江科学院院报, 2019, 36(12):139-143.
[15] 黄华伟, 吴敏, 黄茁. 粉煤灰中氨氮的测定方法研究[J]. 化工环保, 2019, 39(6):702-706.
[16] HJ 535—2009 水质氨氮的测定纳氏试剂分光光度法[S].
[17] GB 5086.1—1997 固体废物浸出毒性浸出方法翻转法[S].
[18] 付自国, 乔登攀, 郭忠林, 等. 基于RSM-BBD的废石-风砂胶结体配合比与强度试验研究[J]. 煤炭学报, 2018, 43(3):694-703.
[19] 陶有俊, 朱向楠, 陶东平, 等. 采用Design-Expert优化粉煤灰摩擦电选脱炭试验研究[J]. 煤炭学报, 2016, 41(2):475-482.
[20] 张超, 王星龙, 李树刚, 等. 基于响应面法治理煤矿硫化氢的改性碱液配比优化[J]. 煤炭学报, 2020, 45(8):2926-2932.
[21] 李绍媛, 王永辉, 李雅楠. NH4+转型和废水温度对吹脱-汽提塔回收氨的影响[J]. 河南化工, 2018, 35(3):45-47.
[22] 马致远, 杨洪英. 响应曲面法优化铜阳极泥微波浸出硒工艺[J]. 中南大学学报:自然科学版, 2015, 46(7):2391-2397.
[23] 蒋洪迅, 田嘉, 孙彩虹. 面向PM2.5预测的递归随机森林与多层神经网络集成模型[J]. 系统工程, 2020, 38(5):14-24.
[24] 康华, 王会平, 李桂春, 等. 基于RSM-BBD的浮选金精矿碘化浸出工艺优化[J]. 黑龙江科技大学学报, 2020, 30(4):356-360,410.
[25] 杨帆, 李枫, 杨凯瑜. Box-Behnken模型响应面法优化口蘑酸奶发酵工艺[J]. 中国乳品工业, 2019, 47(12):54-58.
[26] 张格, 刘亚民, 段兆辉. 《水泥及混凝土用粉煤灰中氨含量的测定方法》团体标准制定内容[J]. 水泥, 2019(S1):59-61.
[27] KIM J K, PARK S U, LEE H D, et al. Release of ammonia odor from AAFA(Ammonia Adsorbed Fly Ash) by installation of NOx reduction system[J]. KEPCO Journal on Electric Power and Energy, 2016, 2(3):437-445.
[28] 曾法强, 楼国权. 粉煤灰在水和碱溶液中pH值的变化研究[J]. 中外公路, 2010, 30(3):281-284.
文章导航

/