高热稳定性α-氧化铁的宏量制备及其电化学性能研究
收稿日期: 2021-09-15
网络出版日期: 2022-03-18
基金资助
国家自然科学基金项目(51832007);山东省自然科学基金重大基础研究项目(ZR2020ZD35);中国科学院战略高技术创新基金项目(GQRC-19-21);山东大学齐鲁青年学者项目
Study on large-scale preparation and electrochemical properties of high thermal stabilized α-Fe2O3
Received date: 2021-09-15
Online published: 2022-03-18
氧化铁(Fe2O3)是一种重要的n型半导体材料,被广泛应用于染料、废水处理、光催化和锂离子电池等领域。采用水热法合成了不同直径大小的片状结构的α-氧化铁,其中大尺寸的片状α-氧化铁在1 000 ℃仍能保持原有的表观颜色和形态,证明了其具有高热稳定性,在油漆、染料等领域具有较大的应用潜力。研究了氢氧化钠与三氯化铁溶液浓度及其混合顺序对α-氧化铁材料性能的影响,并且分析了片状α-氧化铁的带隙、锂离子电池性能及粉体表观颜色与颗粒尺寸的依赖关系。结果表明,通过调整氢氧化钠溶液的浓度和氢氧化钠与三氯化铁的滴加顺序可以得到不同尺寸的片状α-氧化铁,α-氧化铁的颜色随着其颗粒尺寸的增大而加深,带隙随着颗粒尺寸的减小呈现上升趋势,并且纳米级颗粒相对于微米级颗粒会提高锂离子电池的实际容量。该研究有助于研发α-氧化铁的宏量制备工艺及发掘其在电化学、陶瓷釉料、颜料等方面的应用,对降低传统能源活动的碳排放、推动中国早日实现“双碳”的国家目标具有重要的意义。
路正 , 陈昆峰 , 薛冬峰 . 高热稳定性α-氧化铁的宏量制备及其电化学性能研究[J]. 无机盐工业, 2022 , 54(3) : 45 -50 . DOI: 10.19964/j.issn.1006-4990.2021-0564
Ferric oxide(Fe2O3) is an important n-type semiconductor material,which has been widely used in the fields of dyes,sensors,wastewater treatment,photocatalysis and lithium ion batteries.α-Fe2O3 with different sizes of flake structures was synthesized by hydrothermal method.The large size of flake α-Fe2O3 could still retain its original color and shape at 1 000 ℃,which proved that it had high thermal stability and had great application potential in paint,dye and other fields.The effect of NaOH and FeCl3 solution concentration and mixing order on α-Fe2O3 materials was studied.Moreover,the band gap,lithium storage performance and the dependence of powder color and size were analyzed.The results showed that flake α-Fe2O3 with different sizes could be obtained by adjusting the NaOH concentration and NaOH/FeCl3 adding sequence.The color of α-Fe2O3 deepened with the increase of particle size,and the band gap increased with the decrease of the particle size.Moreover,the actual capacity of the battery could be improved by dozens of nano-sized particles compared with micron size particles.It would provide the benefit to the research and development of the macro-preparation process of α-Fe2O3 and the application of electrochemistry,ceramic glazes,pigments.More importantly,the development of α-Fe2O3 was of great significance for reducing carbon emissions from traditional energy activities and promoting China′s early realization of the“dual carbon” national goal.
[1] | CHEN J, XU L N, LI W Y, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Advanced Materials, 2005, 17(5):582-586. |
[2] | LIANG H F, WANG Z C. Facile synjournal and photocatalytic activity of cocoon-like hollow hematite nanostructures[J]. Materials Letters, 2013, 96:12-15. |
[3] | MASOUD E M. Nano α-Fe2O3 synthesized using EDTA-aqueous so-lution simple and novel method:Improved capacity retention at 1C rate as anode for high rate performance of lithium-ion batteries[J]. Ionics, 2021, 27(7):2847-2855. |
[4] | CHEN K F, XUE D F. Microwave-hydrothermal synjournal of Fe-ba-sed materials for lithium-ion batteries and supercapacitors[J]. Cera-mics International, 2014, 40(2):2877-2884. |
[5] | LI K Y, CHEN K F, XUE D F, et al. Low temperature synjournal of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 136:10-18. |
[6] | 张硕嘉, 杨玉彬, 唐宇, 等. 高活性Fe2O3@Ni复合电极制备及电化学性能研究[J]. 无机盐工业, 2019, 51(7):24-27. |
[7] | SUN W T, MENG Q Q, JING L Q, et al. Facile synjournal of surface-modified nanosized α-Fe2O3 as efficient visible photocatalysts and me-chanism insight[J]. Journal of Physical Chemistry C, 2013, 117(3):1358-1365. |
[8] | 王晨鑫, 陈美丽, 田蒙奎, 等. 镂空α-氧化铁纳米带制备及其光催化性能研究[J]. 无机盐工业, 2021, 53(6):185-189. |
[9] | XU X N, WOLFUS Y, SHAULOV A, et al. Annealing study of Fe2O3 nanoparticles:Magnetic size effects and phase transformations[J]. Journal of Applied Physics, 2002, 91(7):4611-4616. |
[10] | JIN J, OHKOSHI S, HASHIMOTO K. Giant coercive field of nano-meter-sized iron oxide[J]. Advanced Materials, 2004, 16:48-51. |
[11] | ANTONIETTI M, OZIN G A. Promises and problems of mesoscale materials chemistry or why meso?[J]. Chemistry:A European Jour-nal, 2004, 10(1):28-41. |
[12] | KIM S S, ZHANG W Z, PINNAVAIA T J. Ultrastable mesostructur-ed silica vesicles[J]. Science, 1998, 282(5392):1302-1305. |
[13] | WU H, LI Y. Facile synjournal of porous waist drum-like α-Fe2O3 nanocrystals as electrode materials for supercapacitor applicati-on[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(14):18777-18789. |
[14] | 陆希峰, 朱玲玲, 满杰, 等. α-氧化铁纳米花的合成、表征与气敏性能研究[J]. 无机盐工业, 2017, 49(9):35-37. |
[15] | FU Y Y, WANG R M, XU J, et al. Synjournal of large arrays of align-ed α-Fe2O3 nanowires[J]. Chemical Physics Letters, 2003, 379:373-379. |
[16] | CHEN K F, XUE D F. Toward materials-by-design:Achieving func-tional materials with physical and chemical effects[J]. Nanotechno-logy, 2020, 31(2).Doi: 10.1088/1361-6528/ab4833. |
[17] | CHEN K F, XUE D F. Materials chemistry toward electrochemical energy storage[J]. Journal of Materials Chemistry A, 2016, 4(20):7522-7537. |
[18] | WANG J, WHITE W B, ADAIR J H. Optical properties of hydro-thermally synthesized hematite particulate pigments[J]. Journal of the American Ceramic Society, 2005, 88(12):3449-3454. |
[19] | HANG B T, ANH T T. Controlled synjournal of various Fe2O3 morph-ologies as energy storage materials[J]. Scientific Reports, 2021, 11(1).Doi: 10.1038/s41598-021-84755-z. |
[20] | MANSOUR H, LETIFI H, BARGOUGUI R, et al. Structural,opti-cal,magnetic and electrical properties of hematite(α-Fe2O3) nano-particles synthesized by two methods:Polyol and precipitation[J]. Applied Physics A:Materials Science & Processing, 2017, 123(12).Doi: 10.1007/s00339-017-1408-1. |
[21] | ZENG S Y, TANG K B. Controlled synjournal of α-Fe2O3 nanorods and its size-dependent optical absorption,electrochemical,and magnetic properties[J]. Journal of Colloid and Interface Science, 2007, 312(2):513-521. |
[22] | HUANG W Y, CHEN K F, XUE D F, et al. Colloidal to micrometer-sized iron oxides and oxyhydroxides as anode materials for batteri-es and pseudocapacitors:Electrochemical properties[J]. Colloids and Surfaces A, 2021, 615.Doi: 10.1016/j.colsurfa.2021.126232. |
[23] | KATSUKIA H, CHOI E K. Controlled synjournal of hexagonal α-Fe2O3 crystals for ceramic colors by hydrothermal reaction of FeCl3 and NaOH solutions[J]. Ceramics International, 2017, 43(16):14050-14056. |
[24] | KLUG H P, ALEXANDER L E. X-ray diffraction procedures for polycrystalline and amorphous materials[M]. New York:John Wi-ley & Sons, 1974. |
[25] | MIYOSHI H, YONEYAMA H. Photochemical properties of iron oxide incorporated in clay interlayers[J]. Journal of The Chemical Society:Faraday Transactions I, 1989, 85(7):1873-1880. |
[26] | PICCININ S. The band structure and optical absorption of hematite (α-Fe2O3):A first-principles GW-BSE study[J]. Physical Che-mistry Chemical Physics, 2019, 21(6):2957-2967. |
[27] | ABE T, TACHIBANA Y, UEMATSU T, et al. Preparation and ch-aracterization of Fe2O3 nanoparticles in mesoporous silicate[J]. Journal of The Chemical Society:Chemical Communications, 1995, 16:1617-1618. |
[28] | MIZUNO S, YAO H. On the electronic transitions of α-Fe2O3 hema-tite nanoparticles with different size and morphology:Analysis by simultaneous deconvolution of UV-vis absorption and MCD spec-tra[J]. Journal of Magnetism and Magnetic Materials, 2021, 517. Doi: 10.1016/j.jmmm.2020.167389. |
[29] | PRIYA A K, SUNNY A, KARTHIKEYAN B, et al. Optical,spectro-scopic and fiber optic gas sensing of potassium doped α-Fe2O3 na-nostructures[J]. Optical Fiber Technology, 2020, 58.Doi: 10.1016/j.yofte.2020.102304. |
[30] | 乔文灿. 纳米α-Fe2O3和微球状FeF3(H2O)0.33颗粒的制备及其电化学性能研究[D]. 武汉:华中农业大学, 2013. |
/
〈 |
|
〉 |