无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

金负载多孔g-C3N4纳米片制备及可见光催化产氢性能

  • 陈建军 ,
  • 乔岩 ,
  • 刘梓娴 ,
  • 彭缓缓 ,
  • 宋佳琳 ,
  • 高燕 ,
  • 李永宇
展开
  • 郑州师范学院化学化工学院,环境与催化工程研究所,河南郑州 450044
陈建军(1982— ),男,博士,讲师,研究方向为光催化;E-mail: jianjunch82612@163.com

收稿日期: 2021-07-07

  网络出版日期: 2022-03-18

基金资助

河南省科技攻关项目(212102310513);河南省高等学校大学生创新创业训练计划项目(S202012949003);郑州师范学院环境催化创新团队(702010);郑州师范学院大学生创新创业训练计划项目(DCZ2020017);郑州师范学院青年骨干教师培养计划(QNGG-20889)

Preparation of Au-supported porous g-C3N4 nanosheets for photocatalytic H2 evolution performance under visible-light

  • Jianjun CHEN ,
  • Yan QIAO ,
  • Zixian LIU ,
  • Huanhuan PENG ,
  • Jialin SONG ,
  • Yan GAO ,
  • Yongyu LI
Expand
  • Institute of Environmental & Catalytic Engineering,School of Chemistry and Chemical Engineering,Zhengzhou Normal University,Zhengzhou 450044,China

Received date: 2021-07-07

  Online published: 2022-03-18

摘要

石墨相氮化碳(g-C3N4)作为一种不含金属的光催化剂,因成本低、简单易得和良好的光响应特性受到关注。然而,电子-空穴对的高复合率阻碍了其广泛的应用。以三聚氰胺为原料、尿素为致孔剂,通过水热结合煅烧方法制备出多孔g-C3N4纳米片(PCNS),然后采用化学还原法将金(Au)负载在PCNS表面,并对反应体系中的金含量进行调控。通过X射线衍射(XRD)、红外光谱(FT-IR)、拉曼(Raman)光谱、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和电化学测试等对复合材料进行了表征。与PCNS相比,Au/PCNS复合材料不仅具有更强的光吸收性能,而且电子和空穴的复合率也明显降低。同时对复合材料的可见光分解水产氢性能进行了研究,结果发现0.5%Au/PCNS呈现出最优的光催化产氢速率[84.09 μmol/(g·h)],是0.5%Au/g-C3N4[1.88 μmol/(g·h)]的44.7倍。

本文引用格式

陈建军 , 乔岩 , 刘梓娴 , 彭缓缓 , 宋佳琳 , 高燕 , 李永宇 . 金负载多孔g-C3N4纳米片制备及可见光催化产氢性能[J]. 无机盐工业, 2022 , 54(3) : 132 -136 . DOI: 10.19964/j.issn.1006-4990.2021-0343

Abstract

Graphite carbon nitride(g-C3N4),as a metal-free photocatalyst,has attracted much attention due to its low cost, easy availability and good photoresponse characteristics.However,the high recombination rate of electron-hole pairs hinders its wide application.Herein,using melamine as raw material and urea as a porogen,porous g-C3N4 nanosheets(PCNS)was prepared by the hydrothermal combined calcination method.Chemical reduction method was used to load Au on the surface of PCNS,and the Au content in the reaction system was also adjusted.The composites were characterized by X-ray diffraction (XRD),infrared spectroscopy(FT-IR),Raman spectroscopy(Raman),transmission electron microscopy (TEM),ultraviolet visible diffuse reflectance spectroscopy(UV-Vis DRS) and electrochemical tests.In comparison with PCNS,Au/PCNS co-mposite not only had stronger light absorption performance,but the recombination rate of electrons and holes was also signi-ficantly reduced.At the same time,the hydrogen production performance of composite under visible light was studied,and it was found that 0.5%Au/PCNS showed the best photocatalytic hydrogen production rate[84.09 μmol/(g·h)],which was 44.7 times of 0.5%Au/g-C3N4[1.88 μmol/(g·h)].

参考文献

[1] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric pho-tocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80.
[2] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materi-als:Controllable synjournal and applications in fuel cells and photo-catalysis[J]. Energy & Environmental Science, 2012(5):6717-6731.
[3] ZHU D, ZHOU Q. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light[J]. Applied Catalysis B:Environmental, 2020, 281.Doi: 10.1016/j.apcatb.2020.119474.
[4] 殷楠, 刘婵璐, 张进. MoO3/g-C3N4 复合材料的制备及光催化性能[J]. 无机盐工业, 2020, 52(10):161-165.
[5] XU J, ZHANG L, SHI R, et al. Chemical exfoliation of graphitic car-bon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46):14766-14772.
[6] TONG J, ZHANG L, LI F, et al. Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution[J]. RSC Advances, 2015, 5(107):88149-88153.
[7] TIAN N, ZHANG Y, LI X, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy, 2017, 38:72-81.
[8] RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1):48-55.
[9] WANG T, MENG X, LI P, et al. Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect[J]. Nano Energy, 2014, 9:50-60.
[10] LIN B, LI J, XU B, et al. Spatial positioning effect of dual cocata-lysts accelerating charge transfer in three dimensionally ordered macroporous g-C3N4 for photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental, 2019, 243:94-105.
[11] CHENG W, SU H, TANG F, et al. Synergetic enhancement of plas-monic hot-electron injection in Au cluster-nanoparticle/C3N4 for photocatalytic hydrogen evolution[J]. Journal of Materials Chemi-stry A, 2017, 5(37):19649-19655.
[12] ZHANG X, XIE X, XIE Y, et al. Enhanced photoresponsive ultra-thin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1):18-21.
[13] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nano-sheets for improved photocatalytic activities[J]. Advanced Func-tional Materials, 2012, 22(22):4763-4770.
[14] 姜鹏程, 王周福, 王玺堂. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6):6048-6053.
文章导航

/