多级孔ZSM-5/SAPO-34复合分子筛制备及催化MTO性能研究
收稿日期: 2021-07-07
网络出版日期: 2022-03-18
基金资助
国家科技支撑计划(2013BAE11B03);江苏省产学研前瞻性联合研究项目(BY2016005-11)
Study on preparation of hierarchical ZSM-5/SAPO-34 composite molecular sieve and its MTO performance
Received date: 2021-07-07
Online published: 2022-03-18
为制备性能更加优异的甲醇制烯烃(MTO)催化剂及进一步探究多级孔道对MTO催化反应的影响,采用柠檬酸溶液(CA)运用后处理方法对复合分子筛进行刻蚀,成功制备了具有多级孔道结构的ZSM-5/SAPO-34复合分子筛(CA-Z-S)。对复合分子筛的晶相、骨架、孔结构等理化性质进行了表征;将复合分子筛用于催化MTO反应,考察了复合分子筛的催化性能。表征结果表明,使用CA处理对ZSM-5/SAPO-34复合分子筛的形貌、结构会产生影响,使CA-Z-S具有更紧密的复合结构、适量的弱酸中心和多级孔道复合结构。催化测试结果表明,甲醇转化率达到100%时,CA-Z-S的寿命为1 200 min,较SAPO-34提高79%,较ZSM-5/SAPO-34提高30%;CA-Z-S对轻烯烃的选择性达到90.5%,较SAPO-34提高约3.7%。研究结果表明,利用CA对复合分子筛进行后处理,有利于复合分子筛催化MTO反应性能的提升。
王银忠 , 秦冬玲 , 杨刚 . 多级孔ZSM-5/SAPO-34复合分子筛制备及催化MTO性能研究[J]. 无机盐工业, 2022 , 54(3) : 119 -124 . DOI: 10.19964/j.issn.1006-4990.2021-0368
In order to prepare MTO catalysts with better performance and further investigate the effect of multi-level pores on the catalytic reaction of MTO,ZSM-5/SAPO-34 composite molecular sieve(CA-Z-S) with multi-level pore structure was successfully prepared by etching the composite molecular sieve with citric acid solution(CA) using post-treatment method. The physicochemical properties of the composite molecular sieve,such as crystalline phase,skeleton and pore structure,were also characterized.The composite molecular sieve was used for catalytic methanol-to-olefin(MTO) reaction and its catalytic performance was investigated.The characterization results showed that the treatment with CA would have effect on the morpho-logical structure of the ZSM-5/SAPO-34 composite molecular sieve,resulting in a more compact composite structure,a mod-erate amount of weak acid centers and a multi-level pore composite structure of CA-Z-S.The catalytic test results showed that the lifetime of CA-Z-S was 1 200 min at 100% methanol conversion,which was 79% higher than that of SAPO-34 and 30% higher than that of ZSM-5/SAPO-34.The selectivity of CA-Z-S for light olefins reached 90.5%,which was about 3.7% higher than that of SAPO-34.The results indicated that the post-treatment of the composite molecular sieve with CA was beneficial to the performance of the composite molecular sieve catalyzed MTO reaction.
Key words: SAPO-34; ZSM-5; composite molecular sieve; MTO reaction
[1] | TIAN P, WEI Y, YE M, et al. Methanol to olefins(MTO):From fun-damentals to commercialization[J]. ACS Catalysis, 2015, 5(3):1922-1938. |
[2] | 聂晓明, 袁波, 贾聪娜, 等. 甲醇制烯烃(MTO)的生产技术现状及发展趋势[J]. 山东化工, 2021, 50(1):99-100. |
[3] | 张耀日, 裴仁彦, 霍志萍, 等. 高岭土微球离子热法原位合成SAPO-34分子筛[J]. 无机盐工业, 2015, 47(4):75-78. |
[4] | WU H, WANG X, LIU F, et al. Facile in situ hydrothermal crystalli-zation synjournal of SAPO-34/ZSM-5 composite catalyst for metha-nol to olefin reaction[J]. Journal of Porous Materials, 2019, 26(3):793-802. |
[5] | AHMAD M S, CHENG C K, BHUYAR P, et al. Effect of reaction co-nditions on the lifetime of SAPO-34 catalysts in methanol to olefins process-A review[J]. Fuel, 2021, 283.Doi: 10.1016/j.fuel.2020.118851. |
[6] | SHAO J, FU T, MA Q, et al. Controllable synjournal of nano-ZSM-5 catalysts with large amount and high strength of acid sites for con-version of methanol to hydrocarbons[J]. Microporous and Mesopo-rous Materials, 2019, 273:122-132. |
[7] | LIU Y, ZHOU X, PANG X, et al. Improved para-xylene selectivity in meta-xylene isomerization over ZSM-5 crystals with relatively long b-axis length[J]. ChemCatChem, 2013, 5(6):1517-1523. |
[8] | CHAE H, SONG Y H, JEONG K E, et al. Physicochemical characte-ristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4):600-603. |
[9] | FAN Y, LEI D, SHI G, et al. Synjournal of ZSM-5/SAPO-11 compo-site and its application in FCC gasoline hydro-upgrading catalyst[J]. Catalysis Today, 2006, 114(4):388-396. |
[10] | ZHANG Q, LI C, XU S, et al. Synjournal of a ZSM-5(core)/SAPO-5(shell) composite and its application in FCC[J]. Journal of poro-us Materials, 2013, 20(1):171-176. |
[11] | DUAN C, ZHANG X, ZHOU R, et al. Hydrothermally synthesized HZSM-5/SAPO-34 composite zeolite catalyst for ethanol conver-sion to propylene[J]. Catalysis Letters, 2011, 141(12):1821-1827. |
[12] | 邵武俊, 刘春燕, 贺宁, 等. 草酸溶液处理对SAPO-34分子筛物性和催化性能的影响[J]. 无机盐工业, 2020, 52(2):84-90. |
[13] | 邵川, 王银忠, 秦冬玲, 等. 酸掺杂原位合成多级孔SAPO-34及用于催化甲醇制烯烃反应[J]. 南京工业大学学报:自然科学版, 2021, 43(5):600-608. |
[14] | 孙翠娟, 李玉平, 王艳悦, 等. ZSM-5/SAPO-34复合分子筛的合成及甲醇制烯烃催化性能[J]. 天然气化工:C1化学与化工, 2015, 40(2):1-4. |
[15] | 吴红. 原位两步晶化法制备SAPO-34/ZSM-5复合分子筛及其催化甲醇制烯烃反应研究[D]. 贵阳:贵州大学, 2020. |
[16] | CHEN X, JIANG R, HOU H, et al. Synjournal of ZSM-5/SAPO-34 zeolite composites from LAPONITE® and their catalytic properties in the MTO reaction[J]. CrystEngComm, 2020, 22(37):6182-6188. |
[17] | CHEN H, WANG M, YANG M, et al. Organosilane surfactant-di-rected synjournal of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance[J]. Journal of Materials Sci-ence, 2019, 54(11):8202-8215. |
[18] | SUN Q, WANG N, GUO G, et al. Synjournal of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance[J]. Journal of Materials Che-mistry A, 2015, 3(39):19783-19789. |
[19] | TAN J, LIU Z, BAO X, et al. Crystallization and Si incorporation mechanisms of SAPO-34[J]. Microporous and Mesoporous Mate-rials, 2002, 53(1):97-108. |
[20] | CHEN D, MOLJORD K, HOLMEN A. A methanol to olefins review:Diffusion,coke formation and deactivation on SAPO type cataly-sts[J]. Microporous and Mesoporous Materials, 2012, 164:239-250. |
[21] | WU L, HENSEN E J M. Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction[J]. Catalysis Today, 2014, 235:160-168. |
/
〈 |
|
〉 |