热处理对粉煤灰酸渣基二氧化硅气凝胶结构和疏水性的影响
收稿日期: 2021-06-08
网络出版日期: 2022-03-18
基金资助
黑龙江省自然科学基金(LH2019E119);黑龙江科技大学引进高层次人才科研启动基金(70300000509)
Effect of thermal treatment on structure and hydrophobicity of SiO2 aerogels derived from fly ash acid sludge
Received date: 2021-06-08
Online published: 2022-03-18
粉煤灰酸渣是粉煤灰经酸溶提铝后的副产品,主要化学成分为无定形二氧化硅,其资源化利用不仅解决了粉煤灰酸渣堆存带来的环境问题,还能获得附加值较高的二氧化硅气凝胶。以粉煤灰酸渣制备的水玻璃为原料,通过溶胶-凝胶—溶剂交换/表面改性—常压干燥工艺成功制备了低密度(0.083 g/cm3)、高比表面积(708 m2/g)、高疏水性(接触角为143°)的多孔二氧化硅气凝胶。通过热重-差热分析、红外光谱分析、接触角测试、扫描电镜分析、氮气吸附-脱附测试等手段对热处理前后二氧化硅气凝胶的结构和疏水性进行了表征。结果表明,随着热处理温度升高,二氧化硅气凝胶的比表面积增大、疏水性逐渐减弱直至消失。300 ℃热处理后,二氧化硅气凝胶仍具有较强的疏水性(接触角约为128°),密度为0.080 g/cm3。当热处温度为400~600 ℃时,二氧化硅气凝胶仍具有中孔结构,由疏水性变为亲水性,密度从0.073 g/cm3增加到0.078 g/cm3。
马越 , 程妍 . 热处理对粉煤灰酸渣基二氧化硅气凝胶结构和疏水性的影响[J]. 无机盐工业, 2022 , 54(3) : 109 -112 . DOI: 10.19964/j.issn.1006-4990.2021-0291
Fly ash acid sludge is by-product of fly ash after alumina extraction by acid leaching process,and its main compo-nent is amorphous silica.Its resource utilization not only solves the environmental problems caused by the accumulation of fly ash acid sludge,but also can obtain silica aerogels with high added value.SiO2 aerogels with mesoporous structure represented a low density of 0.083 g/cm3,high surface area of 708 m2/g and high hydrophobicity(contact angle of 143°)were prepared by sol-gel method,solvent exchange/surface modification and atmospheric drying using the sodium silicate derived from fly ash acid sludge.The structure and hydrophobicity of SiO2 aerogels before and after heat treatment were characterized by thermogravimetric analyzer,fourier transform infrared spectrometer,contact angle tester,scanning electron microscope and N2 adsorption-desorption test.The experimental results indicated that with the increase of heat treatment temperature,the specific surface area of SiO2 aerogels increased,and the hydrophobicity gradually decreased until it disappeared.When the heating temperature reached to 300 ℃,the hydrophobicity of silica aerogels remained unchanged(contact angle of 128°),and their den- sity was 0.080 g/cm3.After heating temperature was ranged from 400 ℃ to 600 ℃,the surface characteristic of silica aerogels with the mesoporous structure became hydrophilic and the density of silica aerogels increased from 0.073 to 0.078 g/cm3.
[1] | CIRIMINNA R, FIDALGO A, PANDARUS V, et al. The sol-gel ro-ute to advanced silica-based materials and recent applications[J]. Chemical Reviews, 2013, 113(8):6592-6620. |
[2] | THAPLIYAL P C, SINGH K. Aerogels as promising thermal insulating materials:An overview[J]. Journal of Materials, 2014, 2014.Doi: 10.1155/2014/127049. |
[3] | THAI Q B, SIANG T E, LE D K, et al. Advanced fabrication and multi-properties of rubber aerogels from car tire waste[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 577:702-708. |
[4] | 赵洪凯, 邵凯, 刘威. 纳米级增强体复合硅气凝胶的研究进展[J]. 无机盐工业, 2020, 52(4):7-11. |
[5] | 马利国, 孙艳荣, 李东来, 等. 二氧化硅气凝胶硅源选择的研究进展[J]. 无机盐工业, 2020, 52(8):11-16. |
[6] | 朱建军, 姜德立, 魏巍, 等. 常压制备疏水型二氧化硅气凝胶及透光率分析[J]. 无机盐工业, 2013, 45(12):21-23. |
[7] | NAZRIATI N, SETYAWAN H, AFFANDI S, et al. Using bagasse ash as a silica source when preparing silica aerogels via ambient press-ure drying[J]. Journal of Non-Crystalline Solids, 2014, 400:6-11. |
[8] | 张瑞, 于永生, 刘鹏. 水玻璃基低密度疏水二氧化硅气凝胶制备及性能研究[J]. 无机盐工业, 2018, 50(4):37-40. |
[9] | 翟界秀, 杨大令, 韩俊南. 碱性催化剂对SiO2气凝胶性能的影响研究[J]. 功能材料, 2019, 50(2):2184-2188. |
[10] | KHEDKAR M V, SOMVANSHI S B, HUMBE A V, et al. Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process[J]. Journal of Non-Crystalline Solids, 2019, 511:140-146. |
[11] | 许佩瑶, 吴世军. 粉煤灰处理含重金属废水的研究进展[J]. 煤炭工程, 2010(2):95-97. |
[12] | SUN Z H, LI H Q, BAO W J, et al. Mineral phase transition of desi-licated high alumina fly ash with alumina extraction in mixed alkali solution[J]. International Journal of Mineral Processing, 2016, 153:109-117. |
[13] | 胡朋朋, 张建波, 李少鹏, 等. 基于高铝粉煤灰的堇青石-莫来石复合材料制备[J]. 洁净煤技术, 2018, 24(5):117-123. |
[14] | ZONG Y, LI F, CHEN W, et al. Extraction of alumina from high-alumina coal ash using an alkaline hydrothermal method[J]. SN Applied Sciences, 2019, 1(7):783-791. |
[15] | 钞晓光, 王宏宾, 曹坤, 等. 粉煤灰酸法提取氧化铝蒸发母液回收氯化铝工艺研究[J]. 无机盐工业, 2020, 52(12):70-74. |
[16] | WANG R C, ZHAI Y C, NING Z Q, et al. Kinetics of leaching from Al2O3 extracted slag of fly ash with sodium hydroxide solution[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:1928-1936. |
[17] | 韩磊, 祝培旺, 戴华, 等. 煤灰酸浸渣碳分法制备纳米白炭黑的试验研究[J]. 材料导报, 2015, 29(8):106-110,114. |
[18] | 于洪鉴, 杜高翔, 王丽娟, 等. 粉煤灰提铝残渣改性制备橡胶填料[J]. 中国粉体技术, 2016, 22(5):14-17. |
[19] | CHENG Y, XIA M S, LUO F, et al. Effect of surface modification on physical properties of silica aerogels derived from fly ash acid sludge[J]. Colloids and Surfaces A:Physicochemical and Engineer-ing Aspects, 2016, 490:200-206. |
/
〈 |
|
〉 |