无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

超声对铁锰氧化物吸附废水中无机砷的强化效应

  • 谭文汐 ,
  • 郭小惠
展开
  • 内蒙古科技大学化学与化工学院,内蒙古包头 014010
谭文汐(1997— ),女,硕士在读,研究方向为无机纳米材料制备及其应用;E-mail: 857974721@qq.com

收稿日期: 2021-05-26

  网络出版日期: 2022-03-18

基金资助

内蒙古自治区高等学校科学技术研究项目(NJZZ21022)

Enhanced effect of ultrasound on adsorption of inorganic arsenic species from wastewater by FeMn oxides

  • Wenxi TAN ,
  • Xiaohui GUO
Expand
  • School of Chemistry and Chemical Engineering,Inner Mongolia University of Science & Technology,Baotou 014010,China

Received date: 2021-05-26

  Online published: 2022-03-18

摘要

快速吸附去除废水中无机砷的技术,由于其高效性成为污水处理领域亟需的一种技术。采用草酸沉淀法制备了不同铁锰比(物质的量比)的铁锰复合草酸盐,以铁锰复合草酸盐为前驱体通过热分解得到铁锰元素均匀分布的复合氧化物,以铁锰复合氧化物为吸附剂吸附去除废水中的无机砷。在超声波辅助下,铁锰复合氧化物对废水中无机砷的去除效果显著。实验结果表明,铁锰物质的量比为6:4的铁锰复合氧化物,因具有较高的比表面积(396.6 m2/g)和独特的形貌,超声辅助1 min对废水中无机砷的吸附率可达95%以上。吸附动力学研究表明,该吸附过程符合准二级动力学模型,吸附速率常数为1.11 g/(mg·s)。吸附剂再生实验表明,将吸附砷的吸附剂采用碳酸氢钠溶液洗脱重复用于吸附实验,吸附剂重复使用3次对砷的吸附率仍可达到83.6%。

本文引用格式

谭文汐 , 郭小惠 . 超声对铁锰氧化物吸附废水中无机砷的强化效应[J]. 无机盐工业, 2022 , 54(3) : 102 -108 . DOI: 10.19964/j.issn.1006-4990.2021-0267

Abstract

Removal of inorganic arsenic species from wastewater by rapid adsorption technology is extremely desirable in the fields of sewerage treatment because of its high efficiency.Herein,FeMn composite oxides with varied Fe/Mn molar ratios as adsorbents were prepared via thermal decomposition of their oxalates precursors.The FeMn composite oxalate was used as the precursor to obtain the composite oxide with uniform distribution of iron and manganese elements through thermal decomposi-tion,and the iron manganese composite oxide was used as the adsorbent to adsorb inorganic arsenic in wastewater.With the aid of ultrasound,the removal effect of iron manganese composite oxide on inorganic arsenic in wastewater was remarkable.The experimental results showed that the FeMn composite adsorbent with n(Fe):n(Mn)=6:4 exhibited above 95% of arsenite removal efficiency under ultrasonic wave within 1 min owing to its high specific surface area(396.6 m2/g) and unique morphology.The study of adsorption kinetics showed that the adsorption process conformed to the quasi second-order kinetic model,and the adsorption rate constant was 1.11 g/(mg·s).The regeneration experiment of adsorbent showed that the adsorbent adsorbed arsenic was eluted with NaHCO3 solution and reused in the adsorption experiment.The adsorption rate of arsenic could still reach 83.6% after the adsorbent was reused for 3 times.

参考文献

[1] HUO J, XU L, CHEN X, et al. Direct epitaxial synjournal of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from wa-ter[J]. Microporous and Mesoporous Materials, 2019, 276:68-75.
[2] 童宏祥. 高浓度含砷污泥氧化稳定化处理与中试研究[D]. 武汉:华中科技大学, 2016.
[3] 高艳芳, 何云. 砷暴露的心血管毒性效应及其机制研究进展[J]. 毒理学杂质, 2016, 30(6):469-471,474.
[4] 金银龙, 梁超轲, 何公理, 等. 中国地方性砷中毒分布调查(总报告)[J]. 卫生研究, 2003, 32(6):519-540.
[5] ALKURDI S S A, HERATH I, BUNDSCHUH J, et al. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water:What needs to be done in future research[J]. Environment International, 2019, 127:52-69.
[6] 张伟. 新型复合铁钛锰吸附剂的研制及其除砷效能与机制研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[7] XU F, CHEN H, DAI Y, et al. Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water[J]. Jo-urnal of Environmental Management, 2019, 245:160-167.
[8] CHENG Y, ZHANG S, HUANG T, et al. Arsenite removal from groun-undwater by iron-manganese oxides filter media:Behavior and me-chanism[J]. Water Environment Research, 2019, 91(6):536-545.
[9] FOROUTAN R, MOHAMMADI R, ADELEYE A S, et al. Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents[J]. Environmental Science and Pollution Research, 2019, 26(4):29748-29762.
[10] SEID-MOHAMMADI A, ASGARI G, RAHMANI A, et al. Synjournal and application of iron/copper bimetallic nanoparticles doped nat-ural zeolite composite coupled with ultrasound for removal of arse-nic(Ⅲ) from aqueous solutions[J]. Desalination and Water Treat-ment, 2019, 161:343-353.
[11] TANAKA Y, OKAWA H, TAKAHASHI Y Y, et al. Utilization of la-yered double hydroxide to remove arsenic and suppress pH decre-ment during ultrasound oxidation of arsenious acid[J]. Japanese Jo-urnal of Applied Physics, 2018, 57(7S1).Doi: 10.7567/JJAP.57.07LE02.
[12] PAN S Z, JIN C Z, YANG X A, et al. Ultrasound enhanced solid-phase extraction of ultra-trace arsenic on Fe3O4@AuNPs magnetic particles[J]. Talanta, 2020, 209.Doi: 10.1016/j.talanta.2019.120553.
[13] GUO X, LIANG X, ZHOU X, et al. Structural,magnetic and electro-chemical properties of hierarchical microspindle-like Fe2-xMnxO3 composites from thermal decomposition of oxalates[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(5):3986-3995.
[14] HOU L, HUA H, LIAN L, et al. Green template-free synjournal of hi-erarchical shuttle-shaped mesoporous ZnFe2O4 microrods with en-hanced lithium storage for advanced Li-ion batteries[J]. Chemistry:A European Journal, 2015, 21(37):13012-13019.
[15] 张杰, 白永波, 郭小惠. 铁锰复合氧化物微米棒:合成中的溶剂效应及其砷吸附性能[J]. 人工晶体学报, 2019, 48(12):2338-2343.
[16] CHEN S, KIMATU B M, FANG D, et al. Effect of ultrasonic treat-ment on transformations of arsenic species in edible mushrooms[J]. Analytical Letters, 2020, 53(1):102-121.
[17] SMEDLEY P L, KINNIBURGH D G. A review of the source,beha-viour and distribution of arsenic in natural waters[J]. Applied Geo-chemistry, 2002, 17(5):517-568.
[18] DOJCINOVIC B P, JANCAR B, BESSAIS L, et al. Differently shaped nanocrystalline(Fe,Y)3O4 and its adsorption efficiency toward in-organic arsenic species[J]. Nanotechnology, 2019, 30(47).Doi: 10.1088/1361-6528/ab3ca2.
[19] WEN Z, LU J, ZHANG Y, et al. Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with exce-llent performance for arsenic removal from water[J]. Journal of Hazardous Materials, 2020, 383.Doi: 10.1016/j.jhazmat.2019.121172.
[20] REN Z, ZHANG G, CHEN J P. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent[J]. Journal of Colloid and Interface Science, 2011, 358(1):230-237.
[21] LI Z, LIU X, JIN W, et al. Adsorption behavior of arsenicals on MIL-101(Fe):The role of arsenic chemical structures[J]. Journal of Co-lloid Interface Science, 2019, 554:692-704.
[22] LEE S Y, JUNG K W, CHOI J W, et al. In situ synjournal of hierarchi-cal cobalt-aluminum layered double hydroxide on boehmite surface for efficient removal of arsenate from aqueous solutions:Effects of solution chemistry factors and sorption mechanism[J]. Chemical Engineering Journal, 2019, 368:914-923.
文章导航

/